Randschichthärten

Aus Arnold Horsch e.K Wissensdatenbank
Version vom 19. Juli 2019, 14:37 Uhr von Horsch (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „Das Randschichthärten ist eine besondere Verfahrenstechnik. Hier wird gezielt eine gewisse Tiefe der Werkstoff härtetechnisch beeinflusst. Nach DIN 17014 ist…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Das Randschichthärten ist eine besondere Verfahrenstechnik. Hier wird gezielt eine gewisse Tiefe der Werkstoff härtetechnisch beeinflusst. Nach DIN 17014 ist der Begriff definiert als „Härten mit einem auf die Randschicht beschränkten Austenitisieren“. Zwischen dem gehärteten Bereich und dem unbeeinflussten Material entsteht die sogenannte „Übergangszone“. Es ist zweckmäßig die Art der Randschichthärtung durch das eingesetzte Verfahren zu beschreiben, z.B. Induktionshärten oder Laserstrahlhärten. Randschichthärten wird angewendet bei niedrig- und unlegierten Stählen mit 0,3 - 0,7% Kohlenstoff (obere Grenze zur Vermeidung von Härterissen), insbesondere bei Kurbelwellen, Zapfen, Walzen, Zahnrädern u.a.. Ziel dieses Verfahrens ist eine harte und verschleißbeständige Oberfläche bei zähem Kern. Dazu wird die Randschicht des Werkstückes auf Härtetemperatur erhitzt und durch Abkühlen (Abschrecken) gehärtet. Das Randschichthärten ist mit folgenden Verfahren möglich:

  • Flammhärten
  • Induktionshärten
  • Laserhärten
  • Elektronenstrahlhärten
Randschichthärten Erzeugung einer harten Randschicht bei zähem Kern
Zahnrad-1.png
Oberflächenhärteverfahren Verfahrensbeschreibung Funktionsprinzip[1]
Flammhärten Beim Flammhärten wird eine Brennerflamme über die zu härtende Werkstoffoberfläche geführt, die hieraufhin austenitisiert wird. Unmittelbar hinter den Brennerflammen sind Wasserdüsen angebracht, die dann für die notwendige Abkühlung zur Martensitbildung sorgen (Abschrecken). Die Dicke der gehärteten Randschicht hängt von der Geschwindigkeit ab, mit der die Brennerflammen über die Werkstückoberfläche gezogen werden. Je langsamer die Geschwindigkeit desto tiefer kann die Wärme eindringen und das Gefüge austenitisieren und umso dicker wird nach dem Abschrecken die gehärtete Randschicht sein. Gleichzeitig muss natürlich auch die zur Martensitbildung notwendige Abkühlgeschwindigkeit in den tieferen Randschichten gegeben sein! Da Legierungselemente im Allgemeinen die kritische Abkühlgeschwindigkeit senken, können bei hochlegierten Stählen tiefere Randschichten gehärtet werden.

Das Flammhärten stößt aufgrund der relativ sperrigen Anordnung der Brennerdüsen und Wasserbrausen vor allem bei kleinen Bauteilen mit komplexen Geometrien an Grenzen. Auch in Sachen Genauigkeit (Einstellung der Härtetiefe) steht das Flammhärten im Allgemeinen dem Induktionshärten und Laserhärten nach. Grundsätzlich sollte das Erwärmen bei den entsprechenden Oberflächenhärteverfahren so zügig wie möglich erfolgen, um die Wärmeeinflusszone auf unerwünschte Bereiche gering zu halten. Ansonsten besteht die Gefahr von Wärmespannungen bzw. des Verzuges der Bauteilgeometrie (Härteverzug). Darüber hinaus kommt es bei langen Heizzeiten zu einer verstärkten Zunderbildung, was in der Regel eine entsprechende Nachbearbeitung erforderlich macht. Bei einer entsprechend raschen Erwärmung muss jedoch beachtet werden, dass kein thermodynamischer Gleichgewichtszustand im Gefüge mehr gegeben ist. Dies führt dazu, dass sich die Umwandlungstemperatur für die Austenitisierung zu höheren Temperaturen hin verschiebt.[1]

Flamm-1.png[1]
Induktiv Härten Die Brennerflammen beim Flammhärten führen im Allgemeinen zu einer großen Wärmeeinflusszone. Dies kann bei kleinen Geometrien zu einer unerwünschten Durchhärtung über den gesamten Querschnitt führen. Um auch solche dünnwandige Werkstücke nur an deren Oberfläche im Bereich von wenigen zehntel Millimetern zu härten kann das Induktionshärten angewandt werden.

Das Prinzip des Induktionshärtens beruht auf dem Induktionseffekt, welcher auch bei Induktionskochfeldern oder Transformatoren genutzt wird. Dabei wird in einer Werkzeugelektrode aus Kupfer, die der Form des zu härtenden Werkstückes angepasst ist, ein hochfrequenter Wechselstrom erzeugt ("Primärspule"). Dies wiederum führt zu einem sich stetig wechselnden Magnetfeld um die Elektrode, welches in das angrenzende Werkstück eindringt und nach dem Induktionseffekt Wirbelströme erzeugt ("Sekundärspule"). Diese sehr großen Wirbelströme von teilweise mehreren Tausend Ampere pro Quadratmillimeter führen zum Erwärmen des Werkstücks. Dass die Wärmeentwicklung dabei vorwiegend an der Oberfläche und weniger im Werkstoffinneren stattfindet ist einem weiteren physikalischen Phänomen zu verdanken, dem sogenannten Skin-Effekt. Während bei Gleichstrom die Stromdichte in einem Leiterquerschnitt konstant ist, so nimmt bei Wechselstrom die Stromdichte mit steigender Frequenz in den äußeren Bereichen zu und im Inneren ab. Die Frequenz der Wirbelströme im Werkstück richtet sich nach der Frequenz des Wechselstromes in der Elektrode (auch Induktor genannt). Hierdurch ergibt sich auch eine relativ einfache Steuerung der Einhärtetiefe. Je höher die Frequenz, desto stärker ist der Skin-Effekt und umso dünnere Härteschichten können erzielt werden.

Die einzustellenden Frequenzen richten sich also nach den zu erzielenden Dicken der Härteschichten. Bei Netzfrequenz von 50 Hz sind Härteschichten im Bereich von 20 mm bis 10 mm erzielbar. Im Mittelfrequenzbereich von 1 kHz bis etwa 10 kHz sind Einhärtetiefen von etwa 5 bis 1 mm erreichbar. Im Hochfrequenzbereich von bis zu mehreren Megahertz können sogar Härteschichten von nur wenigen zehntel Millimetern erzielt werden. Das Abschrecken der austenitisierten Oberfläche erfolgt beim Induktionshärten in der Regel durch nachgeschaltete Wasserbrausen, die mitsamt dem Induktor gleichmäßig über das Werkstück gezogen werden. In Fällen wo nur sehr geringe Einhärtetiefen erzielt werden, kann die Abschreckung auch ohne Wasserbrause über den relativ kühlen Werkstoffkern erfolgen (Selbstabschreckung). Dadurch dass beim Induktionshärten eine sehr große Härte in der Oberfläche erzielt werden kann, kann es zu großen Eigenspannungen kommen. Dies kann ein nachträgliches Anlassen bei geringen Temperaturen erforderlich machen. Die Heizzeiten sind beim Induktionshärten im Allgemeinen wesentlich geringer als beim Flammhärten, da eine ca. 10-fach größere spezifische Heizleistung von mehreren Kilowatt pro Quadratzentimeter erzielt werden kann. Dies hat den Vorteil, dass die Zunderbildung relativ gering ausfällt und der Nachbearbeitungsaufwand dementsprechend reduziert wird. Auch die Gefahr eines Härteverzugs wird hierdurch deutlich verringert. Darüber hinaus entstehen beim Induktionshärten keine (giftigen) Abgase wie beim Flammhärten. Zu den weiteren Vorteilen des Induktionshärtens zählt die gleichmäßigere Erwärmung der Oberfläche, sofern der Induktor optimal auf das Werkstück angepasst ist. Dies erfordert einen entsprechend hohen konstruktiven Werkzeugaufwand im Vorfeld, sodass das Induktionshärten vor allem in automatisierten Fertigungsstraßen bei hohen Losgrößen wirtschaftlich ist. Aufgrund der hohen Stromkosten steigt die Wirtschaftlichkeit, wenn nur geringe Oberflächengrößen an einem Werkstück gehärtet werden müssen.[1]

Induktion-1.png[1]
Laserhärten Nochmals geringere Aufheizzeiten der zu härtenden Oberfläche als beim Induktionshärten bietet das Laserstrahlhärten (kurz: Laserhärten). Hierdurch werden der ohnehin schon geringe Härteverzug und die Verzunderung nochmals deutlich verringert. Unter Schutzgas können Oxidationen der Oberfläche sogar komplett verhindert werden. Beim Laserhärten wird ein Laserstrahl mit sehr hoher spezifischer Leistung (etwa Faktor 10 im Vergleich zum Induktionshärten) über die zu austenitisierende Werkstückoberfläche geführt. Die enorme Wärmeleistung des Diodenlasers von mehreren Kilowatt führt in kürzester Zeit zum Aufheizen der Randschicht bis knapp unterhalb der Schmelztemperatur! Da die Wärmeeinbringung nur auf den lokalen Brennfleck des Lasers begrenzt ist, wird eine unnötige Erwärmung unerwünschter Bereiche vermieden. Dies führt dazu, dass die lokal erwärmte Stelle rasch durch die kühleren Umgebungsbereiche abgeschreckt wird. Aufgrund dieser sogenannten Selbstabschreckung entfällt ein Abschrecken mit Wasserbrausen.

Der Laserfleck umfasst je nach Fokussierung und Prozessführung eine Spurbreite von 1 bis ca. 50 mm. Großflächigere Randschichten müssen mit dem Laser somit zeilenweise abgerastert werden. Typische Randhärtetiefen beim Laserhärten liegen im Bereich von 0,1 bis 2 mm. Wie bereits beim Induktionshärten so gilt auch beim Laserhärten, dass die Wirtschaftlichkeit umso höher ist, je kleiner die zu härtenden Flächen und je geringer die Randschichttiefen ausfallen sollen. Vor allem für sehr schwer zugängliche Stellen wie Absätze oder Sacklochbohrung eignet sich das Laserhärten (partielles Härten).[1]

Laser-1.png[1]
Elektronenstrahlhärten Bei der Elektronenstrahlmaterialbearbeitung werden im Vakuum über ein System aus Kathode, Steuerelektrode und Anode freie Elektronen generiert und auf eine Geschwindigkeit von 200000 Kilometern pro Sekunde beschleunigt. Treffen diese Elektronen auf ein Werkstück, werden diese extrem schnell abgebremst, dabei entsteht Wärme, die zum Härten, Umschmelzen, Beschichten, genutzt werden kann. Zur besseren Prozesskontrolle findet der gesamte Prozess im Hochvakuum statt. Der Einsatz dieses Verfahrens erfolgt in den unterschiedlichsten technologischen Bereichen wie zum Beispiel Automobilbau, Luft‐ und Raumfahrt und Sondermaschinenbau.

Das Elektronenstrahlhärten ist ein Randschichthärteverfahren, mit dem härtbare Werkstoffe auf bis zu 1000HV bei Einhärtetiefen von bis zu 1,5mm gehärtet werden können. Dabei wird der Elektronenstrahl genutzt, um die Oberfläche auf eine definierte Temperatur zu erwärmen. Die für das Härten notwendige schnelle Abkühlung findet dann durch Wärmeableitung in das Bauteil statt. Aufgrund des definierten Energieeintrages ist das Elektronenstrahlhärten nahezu verzugsfrei, d.h. die Bauteile müssen nach dem Härten nicht mehr nachgearbeitet werden. Anwendungsbeispiele: Nockenwellen im Auto, Großgetriebe im Maschinenbau, usw..

Elektronenstrahl-1.jpg[2]
  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens Höfler wurde kein Text angegeben.
  2. Elektronenstrahl-Randschichtbehandlung Innovative Technologien für höchste industrielle Ansprüche , Eigenverlag, pro-beam AG & Co. KGaA Blaue Bücher, Band 3