Zugversuch: Unterschied zwischen den Versionen
Horsch (Diskussion | Beiträge) |
Horsch (Diskussion | Beiträge) |
||
(160 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | == | + | <div class="box pull-right"> |
+ | <div class="heading">Seminare</div> | ||
+ | <p> | ||
+ | Ich biete zu diesem Thema das Seminar [https://arnold-horsch.de/seminar/intensivseminar-haertepruefung '''Zugversuch und Härteprüfung'''] an.<br> | ||
+ | [[File:Zugversuch.jpg|200px|link=http://arnold-horsch.de/seminare]]<br> | ||
+ | Schauen Sie auf [http://arnold-horsch.de meiner Homepage] vorbei und sichern Sie sich Ihren Platz! | ||
+ | </p> | ||
+ | </div> | ||
+ | <big></big>'''[[Werkstoffprüfung|Hauptseite Werkstoffprüfung]]'''<big></big><br> | ||
+ | <big></big>'''[[Hauptseite|Zur Hauptseite]]'''<big></big> | ||
+ | ='''Einleitung'''= | ||
+ | Der Zugversuch an metallischen Werkstoffen ist eines der wichtigsten mechanischen Prüfverfahren. Aus dem Zugversuch werden Kennwerte unter einachsiger Belastung bei konstanter Temperatur (meist Raumtemperatur) bestimmt. Dazu wird ein glatter, d.h. ungekerbter Prüfstab in eine Zugprüfmaschine eingespannt und in Richtung der Stabachse mit konstanter Verformungsgeschwindigkeit bis zum Zerreißen gedehnt. Die Zugprüfmaschine erfasst den Zusammenhang zwischen Zugkraft '''F''' und Verlängerung '''ΔL''' der Probe als Kraft‐Verlängerungs‐Diagramm, mitunter auch als Maschinendiagramm bezeichnet. Kraft und Verlängerung sind aber nicht Werkstoffspezifisch, sondern werden von der Probengeometrie (Anfangsmesslänge, Anfangsquerschnitt) bestimmt. Indem die Zugkraft auf den Probenquerschnitt und die Verlängerung auf die Probenlänge bezogen werden, erhält man das Spannungs‐Dehnungs-Diagramm für den entsprechenden Werkstoff. Bei diesen Diagrammen unterscheidet man das technische Spannungs‐Dehnungs‐Diagramm, das wahre Spannungs‐Dehnungs‐Diagramm und die Fließkurve<ref name="Zugversuch-Dreden"/> <ref name="Vorlesung"/>. | ||
− | + | '''Angegebene Normen''' | |
− | + | <br>Alle angegebenen Normen waren zum Zeitpunkt der Erstellung dieses Wikis gültig, ich bemühe mich sich ändernde Normen regelmäßig einzupflegen. Im Zweifelsfall muss sich der Leser davon überzeugen welche Normen aktuell in welcher Ausgabe gerade gültig und anzuwenden sind. | |
− | |||
− | + | =='''Historie'''== | |
− | + | Der Zugversuch wird bereits seit vielen Hundert Jahren zur Prüfung von Werkstoffen eingesetzt. Seit dem 1900 Jahrhundert wird er wissenschaftlich genutzt. | |
+ | {|class="wikitable" | ||
+ | |-class="hintergrundfarbe9" | ||
+ | |'''Jahr''' | ||
+ | |'''Wer''' | ||
+ | |'''Bild''' | ||
+ | |- | ||
+ | |1452-151 | ||
+ | |Eine der ältesten Bildlichen Darstellungen zum Zugversuch, stammt von Leonardo da Vinci. | ||
+ | |[[File:Leonardo-1.jpg|200px]]<ref name="Krankenhagen"/> | ||
+ | |- | ||
+ | |um 1850 | ||
+ | |entwickelt J.L. Werder die erste deutsche Universalprüfmaschine,sie wurde 1852 an die <br />kgl. Bayr. Eisenbahn Comission geliefert<ref name="Krankenhagen"/>. | ||
+ | | | ||
+ | |- | ||
+ | |1856 | ||
+ | |A. Wöhler beginnt die Untersuchung zur Dauerfestigkeit. | ||
+ | |[[File:Zugversuch-Wöhler.jpg|200px]]<ref name="Krankenhagen"/> | ||
+ | |- | ||
+ | |1858 | ||
+ | |richtet David Kirkaldy eine gegen Gebühren arbeitende Versuchsanstalt (Lohnlabor) in London ein. | ||
+ | |[[File:Zugversuch-Kirkaldy.jpg|200px]]<ref name="Krankenhagen"/> | ||
+ | |- | ||
+ | |1863 | ||
+ | |Krupp hat bei David Kirkaldy prüfen lassen bis er 1863 eine eigene Maschine in seiner Probieranstalt aufstellte | ||
+ | |[[File:Zugversuch-Krupp.jpg|200px]]<ref name="Krankenhagen"/> | ||
+ | |- | ||
+ | |1898 | ||
+ | |Adolf Karl Gottfried Martens gibt sein '''''Handbuch der Materialienkunde für den Maschinenbau''''' heraus.<br />Eine erste zusammenfassende Darstellung aller Werkstoffprüfverfahren, zu dieser Zeit Weltweit das<br />Standardwerk zur Werkstoffprüfung<ref>Adolf Martens, Handbuch der Materialienkunde für den Maschinenbau, Erster Teil, Springer Verlag, Berlin, 1898 </ref>. | ||
+ | | | ||
+ | |} | ||
− | + | ='''Durchführung des Zugversuches'''= | |
− | vermessen | + | Die Probe wird mit einer Normalspannung (senkrecht zur Querschnittfläche wirkenden Kraft) belastet. Das Prüfprinzip ist relativ simpel, die Probe wird<ref name="Vorlesung"/>- |
− | eingespannt | + | * angefertigt |
− | + | * vermessen | |
− | + | * eingespannt | |
+ | * gezogen | ||
− | + | Der Zugversuch wird in der Regel an einer genormten Probe des zu prüfenden Werkstoffes durchgeführt. Hierzu wird die Probe in eine hydraulische oder mechanisch arbeitende Zugprüfmaschine eingespannt und mit zunehmender Zugkraft so lange verformt, bis der Bruch der Probe eintritt. <ref name="Vorlesung"/><ref name="Die Werkstoffprüfverfahren "/>. | |
− | { | + | {|class="wikitable" |
+ | |-class="hintergrundfarbe9" | ||
+ | |'''Zugversuch Ermittelung von''' | ||
+ | |'''schematische Darstellung''' | ||
+ | |- | ||
+ | |'''Spannung''' | ||
+ | Jeder noch so kleine Teil des Querschnittes überträgt einen noch so kleinen Teil der Gesamtkraft '''''F''''',<br />je größer der Querschnitt '''''S<sub>0</sub>''''' - je geringer die Spannung. Beim Zugversuch wird die Spannung in den<br />Diagrammen in '''''Mpa''''' angegeben. | ||
+ | |[[File:Zugversuch-1.jpg|400px]] | ||
+ | |- | ||
+ | |'''Dehnung''' | ||
+ | Wird ein Stab mit einer Normalkraft belastet, ändert sich seine Ausgangslänge. Er wird um den Wert<br /> '''''Δ<sub>L''''' länger, die relative Längenänderung wird als Dehnung '''''ε''''' bezeichnet. Je größer der Querschnitt,<br />desto geringer die Dehnung. Beim Zugversuch wird die Dehnung in den Diagrammen<br /> in '''''%''''' Prozent angegeben | ||
+ | |[[File:Zugversuch-2.jpg|400px]] | ||
+ | |} | ||
− | + | Die erforderliche Zugkraft '''''F''''' wird in abhängigkeit der Probenverlängerung '''''Δ<sub>L<sub>''''' kontinuierlich registriert und mann erhält das '''Kraft-Verlängerungs-Diagramm'''<ref name="Vorlesung"/><ref name="Die Werkstoffprüfverfahren "/>. | |
− | { | + | {|class="wikitable" |
− | + | |-class="hintergrundfarbe9" | |
+ | |'''Werkstoff mit ausgeprägter Streckgrenze''' | ||
+ | |'''Werkstoff ohne ausgeprägte Streckgrenze''' | ||
+ | |- | ||
+ | |[[File:Zuversuch-14.jpg|400px]] | ||
+ | |[[File:Zuversuch-10.jpg|400px]] | ||
+ | |} | ||
− | Um | + | Sowohl die Zugkraft als auch die Probenverlängerung ist von der Probenabmessung abhängig. Das Kraft-Verlängerungs-Diagramm liefert daher keine Werkstoffkennwerte mit dessen Hilfe ein quantitativer Werkstoffvergleich möglich wäre. Um von der Probengeometrie unabhängige Kenngrößen zu ermitteln, bezieht man die Zugkraft '''''F''''' daher auf die Probenquerschnittsfläche '''''S<sub>0</sub>''''' der Probe vor der Prüfung und spricht von der (mechanischen) Spannung '''''σ''''' und man erhält das '''Spannungs-Dehnungs-Diagramm'''<ref name="Die Werkstoffprüfverfahren "/>. |
− | .. | + | {|class="wikitable" |
+ | |-class="hintergrundfarbe9" | ||
+ | |'''Werkstoff mit ausgeprägter Streckgrenze''' | ||
+ | |'''Werkstoff ohne ausgeprägte Streckgrenze''' | ||
+ | |- | ||
+ | |[[File:Zuversuch-12.jpg|400px]] | ||
+ | |[[File:Zuversuch-11.jpg|400px]] | ||
− | == Normung des Zugversuches == | + | |} |
+ | =='''Ermittelte Kennwerte aus dem Zugversuch'''== | ||
+ | Folgende wichtige Kennwerte werden im Zugversuch ermittelt<ref name="Vorlesung"/> - | ||
+ | |||
+ | {|class="wikitable" | ||
+ | |-class="hintergrundfarbe9" | ||
+ | | '''Was''' | ||
+ | | '''Kurzzeichen''' | ||
+ | | '''Dimension''' | ||
+ | | '''Beschreibung''' | ||
+ | |- | ||
+ | |'''Zugfestigkeit''' | ||
+ | |'''R<sub>m</sub>''' | ||
+ | |'''MPa''' | ||
+ | |Als Zugfestigkeit R<sub>m</sub> bezeichnet man das Spannungsmaximum im Spannungs-Dehnungs-Diagramm, d.h. die Höchszugkraft bezogen auf den Anfangsquerschnitt '''''S<sub>0</sub>'''''. Nach überschreiten der Zugfestigkeit erfolgt der Bruch der Probe. Abhängig von der Werkstoffart oder Werkstoffzustand unterscheidet man verschiedene Bruchformen. | ||
+ | |- | ||
+ | |'''Streckgrenze''' | ||
+ | |'''R<sub>e</sub>''' | ||
+ | |'''MPa''' | ||
+ | |Die R<sub>eH</sub> wird meist, bei Werkstoffen mit ausgeprägter oberer Streckgrenze | ||
+ | *'''R<sub>eH</sub>''' obere Streckgrenze | ||
+ | *'''R<sub>eL</sub>''' untere Streckgrenze | ||
+ | |- | ||
+ | |'''Dehngrenzen''' | ||
+ | |'''R<sub>P</sub>''' | ||
+ | |'''Mpa''' | ||
+ | |Bei Werkstoffen ohne ausgeprägte Streckgrenze wird die '''R<sub>P</sub>''' ermittelt.<br />'''R<sub>P 0,2</sub>''', sie wird auch als technische Streckgrenze bezeichnet.<br /> '''R<sub>P 0,01</sub>''' technische Elastizitätsgrenze, gerade eben ermittelbare plastische Verformung, kennzeichnet den Übergang von der Mikroplastizität zum makroskopischen Fließen des Werkstoffes. | ||
+ | |- | ||
+ | |'''Dehnung''' | ||
+ | |'''A''' | ||
+ | |'''%''' | ||
+ | |Unter der Bruchdehnung '''''A''''' versteht man die bleibende Dehnung der Zugprobe nach dem Bruch. | ||
+ | |- | ||
+ | |'''Einschnürung''' | ||
+ | |'''Z''' | ||
+ | |'''%''' | ||
+ | |Die Brucheinschnürung (Verformungszähigkeit) '''''Z''''' ist die größte bleibende Querschnittsänderung nach dem Bruch der Zugprobe. | ||
+ | |- | ||
+ | |'''Elastizitätzmodul''' | ||
+ | |'''''m''<sub>E</sub>''' | ||
+ | |'''Mpa''' | ||
+ | |Steigung des elastischen Teils der Spannung/Extensometer-Dehnung-Kurve.<br />Der Proportionalitätsfaktor '''''E''''', er ist ein Maß für den Widerstand, den ein Werkstoff seiner elastischen Verformung entgegensetzt. Der Elastizitätsmodul (auch Zugmodul, Elastizitätskoeffizient, Dehnungsmodul, E-Modul oder Youngscher Modul) ist ein Materialkennwert, der den Zusammenhang zwischen Spannung und Dehnung bei der Verformung eines festen Körpers bei linear-elastischem Verhalten beschreibt.<br /> | ||
+ | Der Wert der Steigung des elastischen Teils der Spannung/Extensometer-Dehnung-Kurve muss nicht notwendigerweise mit dem Wert des Elastizitätsmoduls übereinstimmen. Beim Vorliegen von optimalen Prüfbedingungen (hochauflösende, beidseitig messende, Mittelwert bildende Dehnungsaufnehmer, perfekte Ausrichtung der Probe usw.) wird dieser Wert dem des Elastizitätsmoduls jedoch recht nahe kommen. | ||
+ | |- | ||
+ | |'''Querkontraktionszahl'''<ref>https://de.wikipedia.org/wiki/Poissonzahl?oldformat=true, 05.04.2017</ref> | ||
+ | |'''μ''' | ||
+ | | | ||
+ | |Die Poissonzahl '''''ν''''' (auch Querkontraktionszahl, Querdehnungszahl oder Querdehnzahl genannt; auch mit '''''μ''''' bezeichnet) ist eine Größe in der Mechanik bzw. Festigkeitslehre. Sie dient der Berechnung der Querkontraktion und ist nach Siméon Denis Poisson benannt. Sie gehört zu den elastischen Konstanten eines Materials. | ||
+ | |- | ||
+ | |'''Proportionalitätsgrenze''' | ||
+ | |'''σ<sub>P</sub>''' | ||
+ | |'''MPa''' | ||
+ | |Punkt im Spannungs-Dehnungs-Diagramm, der das Ende der Hoock'schen Geraden definiert. Ab hier sind Kraft und Weg nicht mehr proportional es findet eine bleibende Verformung statt. Dieser Punkt ist im Zugversuch nicht sicher ermittelbar und hängt sehr stark von den verwendeten Messmethoden ab. | ||
+ | |- | ||
+ | |'''Elastizitätsgrenze''' | ||
+ | |'''σ<sub>E</sub>''' | ||
+ | |'''MPa''' | ||
+ | |Als Elastizitätsgrenze eines Werkstoffes bezeichnet man die Größe der mechanischen Spannung, unterhalb der das Material elastisch ist, d. h., es nimmt wieder die ursprüngliche Form ein, wenn die Belastung entfernt wird (nicht-bleibende/reversible Verformung). Beim Überschreiten der Elastizitätsgrenze tritt eine irreversible Dehnung oder Stauchung bzw. eine plastische Verformung auf. Die Elastizitätsgrenzwerte werden neben anderen Materialkennwerten für die Berechnung und Bestimmung der Festigkeit und Stabilität mechanischer Konstruktionen verwendet. Im Spannungs-Dehnungs-Diagramm ist die Elastizitätsgrenze der Punkt, in dem die Spannungskurve vom linearen Verlauf abweicht. Dieser Punkt ist im Zugversuch nicht eindeutig definiert und hängt sehr stark von den verwendeten Messmethoden ab. Als Ersatzwert wird hier meistens die R<sub>P 0,01</sub>, technische Elastizitätsgrenze ermittelt. | ||
+ | |} | ||
+ | |||
+ | ='''Auswertung'''= | ||
+ | Ist der Zugversuch durchgeführt werden jetzt aus dem Diagramm bzw. den ermittelten Werten die entsprechenden Kennwerte berechnet oder aus dem Diagramm abgelesen. | ||
+ | =='''Kurzzeichen für den Zugversuch'''== | ||
+ | Die nachfolgenden Eingangsparameter mit den Kurzzeichen werden zur Bestimmung der Kennwerte im Zugversuch benötigt | ||
+ | {|class="wikitable" | ||
+ | |-class="hintergrundfarbe9" | ||
+ | |'''Was''' | ||
+ | |'''Kurzzeichen''' | ||
+ | |- | ||
+ | |Probendurchmesser | ||
+ | |'''d<sub>0''' | ||
+ | |- | ||
+ | |Durchmesser nach Bruch | ||
+ | |'''d<sub>U''' | ||
+ | |- | ||
+ | |Anfangsquerschnitt | ||
+ | |'''S<sub>0''' | ||
+ | |- | ||
+ | |Kleinster Probenquerschnitt nach dem Bruch | ||
+ | |'''S<sub>U''' | ||
+ | |- | ||
+ | |Anfangsmesslänge | ||
+ | |'''L<sub>0''' | ||
+ | |- | ||
+ | |Messlänge nach dem Bruch | ||
+ | |'''L<sub>U''' | ||
+ | |- | ||
+ | |Maximalkraft nach Bruch | ||
+ | |'''F''' | ||
+ | |- | ||
+ | |Maximalkraft bei 0,2% Dehnung<br />Maximalkraft bei 0,01% Dehnung<br />Maximalkraft bei R<sub>eH</sub> <br />Maximalkraft bei R<sub>eL</sub> | ||
+ | |'''F''' | ||
+ | |- | ||
+ | |Parallele Länge | ||
+ | |'''L<sub>C''' | ||
+ | |} | ||
+ | |||
+ | =='''Berechnung der Kennwerte aus Zugversuch'''== | ||
+ | {|class="wikitable" | ||
+ | |-class="hintergrundfarbe9" | ||
+ | |Aus dem '''Spannungs-Dehnungs-Diagramm''' können jetzt die entsprechenden Werkstoffkennwerte abgelesen werden<ref name="Vorlesung"/>. | ||
+ | |- | ||
+ | |[[File:Zuversuch-18.jpg|800px|center]] | ||
+ | |} | ||
+ | |||
+ | |||
+ | {|class="wikitable" | ||
+ | |-class="hintergrundfarbe9" | ||
+ | |'''Was''' | ||
+ | |'''Erklärung''' | ||
+ | |'''Formel''' | ||
+ | |'''Dimension''' | ||
+ | |- | ||
+ | |'''Zugfestigkeit''' | ||
+ | |Die von Probengeometrie unabhängige '''Zugfestigkeit ''R<sub>m</sub>''''' (Spannung σ MPa),<br /> wird als das Verhältnis der Bruchkraft '''''F<sub>max''''' / Anfangsquerschnitt '''''S<sub>0''''' ermittelt | ||
+ | |[[File:Zuversuch-8.jpg|700px]] | ||
+ | |'''MPa''' | ||
+ | |- | ||
+ | |'''Streckgrenze''' | ||
+ | |Die von Probengeometrie unabhängige '''Streckgrenze ''R<sub>e</sub>''''' (Spannung σ MPa),<br /> wird als das Verhältnis der Kraft '''''F''''' am Punkt '''''R<sub>eH</sub> - R<sub>eL</sub>'''''/ Anfangsquerschnitt '''''S<sub>0</sub>''''' ermittelt | ||
+ | |[[File:Zuversuch-17.jpg|700px]] | ||
+ | |'''MPa''' | ||
+ | |- | ||
+ | |'''Dehngrenze''' | ||
+ | |Die von Probengeometrie unabhängige '''Dehngrenze ''R<sub>P</sub>''''' (Spannung σ MPa),<br /> wird als das Verhältnis der Kraft '''''F''''' am Punkt Rp (R<sub>P 0,2</sub> - R<sub>P 0,01</sub>) / Anfangsquerschnitt '''''S<sub>0</sub>''''' ermittelt | ||
+ | |[[File:Zuversuch-15.jpg|700px]] | ||
+ | |'''MPa''' | ||
+ | |- | ||
+ | |'''Dehnung''' | ||
+ | |Die von Probengeometrie unabhängige '''Dehnung ''A''''' (Dehnung ''ε'' %),<br /> wird als das Verhältnis der Probenverlängerung '''''Δ<sub>L</sub>''''' / Anfangsmesslänge'''''L<sub>0</sub>''''' ermittelt | ||
+ | |[[File:Zuversuch-9.jpg|700px]] | ||
+ | |'''%''' | ||
+ | |- | ||
+ | |'''Einschnürung''' | ||
+ | |Die von Probengeometrie unabhängige '''Brucheinschnürung ''Z''''' (Einschürung %),<br />wird als das Verhältnis der relativen Querschnittsänderung '''''Δ<sub>S</sub>''''' / Anfangsquerschnitt '''''S<sub>0</sub>''''' ermittelt | ||
+ | |[[File:Zuversuch-16.jpg|700px]] | ||
+ | |'''%''' | ||
+ | |- | ||
+ | |'''E Modul''' | ||
+ | |Der von Probengeometrie unabhängige '''Elastizitätsmodul ''E''''' (E-Modul MPa),<br />wird als das Verhältnis von Spannung '''''Δ<sub><big>σ</big></sub>''''' / Dehnung '''''Δ<sub><big>ε</big></sub>''''' ermittelt | ||
+ | |||
+ | |[[File:E-Modul-1.jpg|300px]] | ||
+ | |'''MPA''' | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |'''''' | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |'''''' | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | ='''Normung des Zugversuches'''= | ||
+ | Folgende Normen regeln Grundsätzlich den Zugversuch an metallischen Werkstoffen, verschieden Produktnormen können andere als in diesen Normen vorgegebene Versuchsparameter fordern. | ||
+ | {| class="wikitable" | ||
+ | |-class="hintergrundfarbe9" | ||
+ | |'''Norm''' | ||
+ | |'''Bezeichnung''' | ||
+ | | '''Teile''' | ||
+ | |- | ||
+ | |'''DIN 50125''' | ||
+ | |Prüfung metallischer Werkstoffe – Zugproben | ||
+ | | | ||
+ | |- | ||
+ | |'''DIN EN ISO 6892''' | ||
+ | |Metallische Werkstoffe – Zugversuch | ||
+ | |Teil 1 - Prüfverfahren bei Raumtemperatur<br />Teil 2 - Prüfverfahren bei erhöhter Temperatur<br />Teil 3 - Prüfverfahren bei tiefen Temperaturen<br />Teil 4 - Prüfverfahren in flüssigem Helium (nur ISO Norm) | ||
+ | |} | ||
+ | |||
+ | ='''Probenformen'''= | ||
+ | Grundsätzlich sind die Probenformen in der Internationalen Norm ISO 6592 nicht genormt. In Deutschland existiert jedoch die DIN 50125 Prüfung metallischer Werkstoffe – Zugproben, es wird empfohlen sich an die in dieser Norm angegebenen Probenformen soweit als möglich zu halten. Außerhalb der in der DIN 50125 vorgegebenen Probenformen, existieren noch eine Vielzahl von Produktnormen in denen spezielle Probenformen vorgegeben werden<ref name="Vorlesung"/>. | ||
+ | * DIN 50125 Prüfung metallischer Werkstoffe – Zugproben | ||
+ | * DIN EN 1561 Zugproben aus Gusseisen mit Lamellengraphit | ||
+ | * DIN EN 1562 Zugproben aus Temperguss | ||
+ | * DIN EN 1563 Zugproben aus Gusseisen mit Kugelgraphit | ||
+ | * DIN EN 1564 Zugproben aus bainitischem Gusseisen | ||
+ | * DIN 50148 Zugproben für Druckguss aus Nichteisenmetallen | ||
+ | * DIN EN 895 Zugproben zur Prüfung von Schweißverbindungen metallischer Werkstoffe | ||
+ | * DIN 8525-1 Zugproben zur Prüfung von Hartlötverbindungen | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |-class="hintergrundfarbe9" | ||
+ | |'''Norm''' | ||
+ | | '''Beschreibung Probenforn''' | ||
+ | |- | ||
+ | |'''DIN 50125 Prüfung metallischer Werkstoffe – Zugproben''' | ||
+ | |[[File:Zuversuch-20.jpg|800px]] | ||
+ | |- | ||
+ | |'''DIN 1561 Zugproben aus Gusseisen mit Lamellengraphit''' | ||
+ | |[[File:Zuversuch-21.jpg|center|400px]] | ||
+ | |} | ||
+ | |||
+ | = '''Einzelnachweise''' = | ||
+ | <references> | ||
+ | <ref name="Krankenhagen">Gernot Krankenhagen, Horst Laube, Werkstoffprüfung - Von Explosionen, Brüchen und Prüfungen, Sachbuch rororo, 1983</ref> | ||
+ | <ref name="Zugversuch-Dreden">Professur für Biomaterialien, Praktikum Werkstoffwissenschaft, Zugversuch, TU Dresden</ref> | ||
+ | <ref name="Die Werkstoffprüfverfahren ">[http://www.arnold-horsch.de/seminare'''Arnold Horsch'''], Vortrag, Die Werkstoffprüfverfahren, Intensivseminar für Auszubildende und Labormitarbeiter, Arnold Horsch e.K., Remscheid</ref> | ||
+ | <ref name="Vorlesung">Arnold Horsch, Vorlesung Grundlagen der Werkstoffprüfung 1+2, als Lehrbeauftrager an der Hochschule Pforzheim, 17.03.2017</ref> | ||
+ | </references> |
Aktuelle Version vom 24. Januar 2024, 06:24 Uhr
Ich biete zu diesem Thema das Seminar Zugversuch und Härteprüfung an.
Schauen Sie auf meiner Homepage vorbei und sichern Sie sich Ihren Platz!
Hauptseite Werkstoffprüfung
Zur Hauptseite
Inhaltsverzeichnis
Einleitung
Der Zugversuch an metallischen Werkstoffen ist eines der wichtigsten mechanischen Prüfverfahren. Aus dem Zugversuch werden Kennwerte unter einachsiger Belastung bei konstanter Temperatur (meist Raumtemperatur) bestimmt. Dazu wird ein glatter, d.h. ungekerbter Prüfstab in eine Zugprüfmaschine eingespannt und in Richtung der Stabachse mit konstanter Verformungsgeschwindigkeit bis zum Zerreißen gedehnt. Die Zugprüfmaschine erfasst den Zusammenhang zwischen Zugkraft F und Verlängerung ΔL der Probe als Kraft‐Verlängerungs‐Diagramm, mitunter auch als Maschinendiagramm bezeichnet. Kraft und Verlängerung sind aber nicht Werkstoffspezifisch, sondern werden von der Probengeometrie (Anfangsmesslänge, Anfangsquerschnitt) bestimmt. Indem die Zugkraft auf den Probenquerschnitt und die Verlängerung auf die Probenlänge bezogen werden, erhält man das Spannungs‐Dehnungs-Diagramm für den entsprechenden Werkstoff. Bei diesen Diagrammen unterscheidet man das technische Spannungs‐Dehnungs‐Diagramm, das wahre Spannungs‐Dehnungs‐Diagramm und die Fließkurve[1] [2].
Angegebene Normen
Alle angegebenen Normen waren zum Zeitpunkt der Erstellung dieses Wikis gültig, ich bemühe mich sich ändernde Normen regelmäßig einzupflegen. Im Zweifelsfall muss sich der Leser davon überzeugen welche Normen aktuell in welcher Ausgabe gerade gültig und anzuwenden sind.
Historie
Der Zugversuch wird bereits seit vielen Hundert Jahren zur Prüfung von Werkstoffen eingesetzt. Seit dem 1900 Jahrhundert wird er wissenschaftlich genutzt.
Jahr | Wer | Bild |
1452-151 | Eine der ältesten Bildlichen Darstellungen zum Zugversuch, stammt von Leonardo da Vinci. | [3] |
um 1850 | entwickelt J.L. Werder die erste deutsche Universalprüfmaschine,sie wurde 1852 an die kgl. Bayr. Eisenbahn Comission geliefert[3]. |
|
1856 | A. Wöhler beginnt die Untersuchung zur Dauerfestigkeit. | [3] |
1858 | richtet David Kirkaldy eine gegen Gebühren arbeitende Versuchsanstalt (Lohnlabor) in London ein. | [3] |
1863 | Krupp hat bei David Kirkaldy prüfen lassen bis er 1863 eine eigene Maschine in seiner Probieranstalt aufstellte | [3] |
1898 | Adolf Karl Gottfried Martens gibt sein Handbuch der Materialienkunde für den Maschinenbau heraus. Eine erste zusammenfassende Darstellung aller Werkstoffprüfverfahren, zu dieser Zeit Weltweit das Standardwerk zur Werkstoffprüfung[4]. |
Durchführung des Zugversuches
Die Probe wird mit einer Normalspannung (senkrecht zur Querschnittfläche wirkenden Kraft) belastet. Das Prüfprinzip ist relativ simpel, die Probe wird[2]-
- angefertigt
- vermessen
- eingespannt
- gezogen
Der Zugversuch wird in der Regel an einer genormten Probe des zu prüfenden Werkstoffes durchgeführt. Hierzu wird die Probe in eine hydraulische oder mechanisch arbeitende Zugprüfmaschine eingespannt und mit zunehmender Zugkraft so lange verformt, bis der Bruch der Probe eintritt. [2][5].
Die erforderliche Zugkraft F wird in abhängigkeit der Probenverlängerung ΔL kontinuierlich registriert und mann erhält das Kraft-Verlängerungs-Diagramm[2][5].
Werkstoff mit ausgeprägter Streckgrenze | Werkstoff ohne ausgeprägte Streckgrenze |
Sowohl die Zugkraft als auch die Probenverlängerung ist von der Probenabmessung abhängig. Das Kraft-Verlängerungs-Diagramm liefert daher keine Werkstoffkennwerte mit dessen Hilfe ein quantitativer Werkstoffvergleich möglich wäre. Um von der Probengeometrie unabhängige Kenngrößen zu ermitteln, bezieht man die Zugkraft F daher auf die Probenquerschnittsfläche S0 der Probe vor der Prüfung und spricht von der (mechanischen) Spannung σ und man erhält das Spannungs-Dehnungs-Diagramm[5].
Werkstoff mit ausgeprägter Streckgrenze | Werkstoff ohne ausgeprägte Streckgrenze |
Ermittelte Kennwerte aus dem Zugversuch
Folgende wichtige Kennwerte werden im Zugversuch ermittelt[2] -
Was | Kurzzeichen | Dimension | Beschreibung |
Zugfestigkeit | Rm | MPa | Als Zugfestigkeit Rm bezeichnet man das Spannungsmaximum im Spannungs-Dehnungs-Diagramm, d.h. die Höchszugkraft bezogen auf den Anfangsquerschnitt S0. Nach überschreiten der Zugfestigkeit erfolgt der Bruch der Probe. Abhängig von der Werkstoffart oder Werkstoffzustand unterscheidet man verschiedene Bruchformen. |
Streckgrenze | Re | MPa | Die ReH wird meist, bei Werkstoffen mit ausgeprägter oberer Streckgrenze
|
Dehngrenzen | RP | Mpa | Bei Werkstoffen ohne ausgeprägte Streckgrenze wird die RP ermittelt. RP 0,2, sie wird auch als technische Streckgrenze bezeichnet. RP 0,01 technische Elastizitätsgrenze, gerade eben ermittelbare plastische Verformung, kennzeichnet den Übergang von der Mikroplastizität zum makroskopischen Fließen des Werkstoffes. |
Dehnung | A | % | Unter der Bruchdehnung A versteht man die bleibende Dehnung der Zugprobe nach dem Bruch. |
Einschnürung | Z | % | Die Brucheinschnürung (Verformungszähigkeit) Z ist die größte bleibende Querschnittsänderung nach dem Bruch der Zugprobe. |
Elastizitätzmodul | mE | Mpa | Steigung des elastischen Teils der Spannung/Extensometer-Dehnung-Kurve. Der Proportionalitätsfaktor E, er ist ein Maß für den Widerstand, den ein Werkstoff seiner elastischen Verformung entgegensetzt. Der Elastizitätsmodul (auch Zugmodul, Elastizitätskoeffizient, Dehnungsmodul, E-Modul oder Youngscher Modul) ist ein Materialkennwert, der den Zusammenhang zwischen Spannung und Dehnung bei der Verformung eines festen Körpers bei linear-elastischem Verhalten beschreibt. Der Wert der Steigung des elastischen Teils der Spannung/Extensometer-Dehnung-Kurve muss nicht notwendigerweise mit dem Wert des Elastizitätsmoduls übereinstimmen. Beim Vorliegen von optimalen Prüfbedingungen (hochauflösende, beidseitig messende, Mittelwert bildende Dehnungsaufnehmer, perfekte Ausrichtung der Probe usw.) wird dieser Wert dem des Elastizitätsmoduls jedoch recht nahe kommen. |
Querkontraktionszahl[6] | μ | Die Poissonzahl ν (auch Querkontraktionszahl, Querdehnungszahl oder Querdehnzahl genannt; auch mit μ bezeichnet) ist eine Größe in der Mechanik bzw. Festigkeitslehre. Sie dient der Berechnung der Querkontraktion und ist nach Siméon Denis Poisson benannt. Sie gehört zu den elastischen Konstanten eines Materials. | |
Proportionalitätsgrenze | σP | MPa | Punkt im Spannungs-Dehnungs-Diagramm, der das Ende der Hoock'schen Geraden definiert. Ab hier sind Kraft und Weg nicht mehr proportional es findet eine bleibende Verformung statt. Dieser Punkt ist im Zugversuch nicht sicher ermittelbar und hängt sehr stark von den verwendeten Messmethoden ab. |
Elastizitätsgrenze | σE | MPa | Als Elastizitätsgrenze eines Werkstoffes bezeichnet man die Größe der mechanischen Spannung, unterhalb der das Material elastisch ist, d. h., es nimmt wieder die ursprüngliche Form ein, wenn die Belastung entfernt wird (nicht-bleibende/reversible Verformung). Beim Überschreiten der Elastizitätsgrenze tritt eine irreversible Dehnung oder Stauchung bzw. eine plastische Verformung auf. Die Elastizitätsgrenzwerte werden neben anderen Materialkennwerten für die Berechnung und Bestimmung der Festigkeit und Stabilität mechanischer Konstruktionen verwendet. Im Spannungs-Dehnungs-Diagramm ist die Elastizitätsgrenze der Punkt, in dem die Spannungskurve vom linearen Verlauf abweicht. Dieser Punkt ist im Zugversuch nicht eindeutig definiert und hängt sehr stark von den verwendeten Messmethoden ab. Als Ersatzwert wird hier meistens die RP 0,01, technische Elastizitätsgrenze ermittelt. |
Auswertung
Ist der Zugversuch durchgeführt werden jetzt aus dem Diagramm bzw. den ermittelten Werten die entsprechenden Kennwerte berechnet oder aus dem Diagramm abgelesen.
Kurzzeichen für den Zugversuch
Die nachfolgenden Eingangsparameter mit den Kurzzeichen werden zur Bestimmung der Kennwerte im Zugversuch benötigt
Was | Kurzzeichen |
Probendurchmesser | d0 |
Durchmesser nach Bruch | dU |
Anfangsquerschnitt | S0 |
Kleinster Probenquerschnitt nach dem Bruch | SU |
Anfangsmesslänge | L0 |
Messlänge nach dem Bruch | LU |
Maximalkraft nach Bruch | F |
Maximalkraft bei 0,2% Dehnung Maximalkraft bei 0,01% Dehnung Maximalkraft bei ReH Maximalkraft bei ReL |
F |
Parallele Länge | LC |
Berechnung der Kennwerte aus Zugversuch
Aus dem Spannungs-Dehnungs-Diagramm können jetzt die entsprechenden Werkstoffkennwerte abgelesen werden[2]. |
Normung des Zugversuches
Folgende Normen regeln Grundsätzlich den Zugversuch an metallischen Werkstoffen, verschieden Produktnormen können andere als in diesen Normen vorgegebene Versuchsparameter fordern.
Norm | Bezeichnung | Teile |
DIN 50125 | Prüfung metallischer Werkstoffe – Zugproben | |
DIN EN ISO 6892 | Metallische Werkstoffe – Zugversuch | Teil 1 - Prüfverfahren bei Raumtemperatur Teil 2 - Prüfverfahren bei erhöhter Temperatur Teil 3 - Prüfverfahren bei tiefen Temperaturen Teil 4 - Prüfverfahren in flüssigem Helium (nur ISO Norm) |
Probenformen
Grundsätzlich sind die Probenformen in der Internationalen Norm ISO 6592 nicht genormt. In Deutschland existiert jedoch die DIN 50125 Prüfung metallischer Werkstoffe – Zugproben, es wird empfohlen sich an die in dieser Norm angegebenen Probenformen soweit als möglich zu halten. Außerhalb der in der DIN 50125 vorgegebenen Probenformen, existieren noch eine Vielzahl von Produktnormen in denen spezielle Probenformen vorgegeben werden[2].
- DIN 50125 Prüfung metallischer Werkstoffe – Zugproben
- DIN EN 1561 Zugproben aus Gusseisen mit Lamellengraphit
- DIN EN 1562 Zugproben aus Temperguss
- DIN EN 1563 Zugproben aus Gusseisen mit Kugelgraphit
- DIN EN 1564 Zugproben aus bainitischem Gusseisen
- DIN 50148 Zugproben für Druckguss aus Nichteisenmetallen
- DIN EN 895 Zugproben zur Prüfung von Schweißverbindungen metallischer Werkstoffe
- DIN 8525-1 Zugproben zur Prüfung von Hartlötverbindungen
Norm | Beschreibung Probenforn |
DIN 50125 Prüfung metallischer Werkstoffe – Zugproben | |
DIN 1561 Zugproben aus Gusseisen mit Lamellengraphit |
Einzelnachweise
- ↑ Professur für Biomaterialien, Praktikum Werkstoffwissenschaft, Zugversuch, TU Dresden
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Arnold Horsch, Vorlesung Grundlagen der Werkstoffprüfung 1+2, als Lehrbeauftrager an der Hochschule Pforzheim, 17.03.2017
- ↑ 3,0 3,1 3,2 3,3 3,4 Gernot Krankenhagen, Horst Laube, Werkstoffprüfung - Von Explosionen, Brüchen und Prüfungen, Sachbuch rororo, 1983
- ↑ Adolf Martens, Handbuch der Materialienkunde für den Maschinenbau, Erster Teil, Springer Verlag, Berlin, 1898
- ↑ 5,0 5,1 5,2 Arnold Horsch, Vortrag, Die Werkstoffprüfverfahren, Intensivseminar für Auszubildende und Labormitarbeiter, Arnold Horsch e.K., Remscheid
- ↑ https://de.wikipedia.org/wiki/Poissonzahl?oldformat=true, 05.04.2017