Metallographie
Ich biete zu diesem Thema die Seminare Metallographie in der Praxis Teil 1 und Teil 2 an.
Schauen Sie auf meiner Homepage vorbei und sichern Sie sich Ihren Platz!
Inhaltsverzeichnis
Einleitung
Seit Henry Clifton Sorby 1886 mit seiner Schrift über Mikroskopische Studien an Meteoriten und Eisen und Stahl die erste metallographische Veröffentlichung herausbrachte, ist die Metallographie ein allgemein anerkanntes Wissensgebiet geworden, das heute aus Wissenschaft und Technik nicht mehr wegzudenken ist.
Leider herrscht oft die Meinung, daß für metallographische Untersuchungen ein umfangreiches Speziallaboratorium nötig ist, dies trifft nur teilweise zu. Es kann eine ganze Anzahl vor allem makroskopischer Untersuchungen mit einfachen Mitteln durchgeführt werden. Auch für mikroskopische Untersuchungen ist nicht immer ein großes Metallmikroskop nötig. So sind z.B. Geräte für Härteprüfungen nach Vickers meist mit Auflichtoptiken ausgestattet, die sich auch für metallegraphische Betrachtungen eignen. Für die richtige Probennahme aus den Objekten und die Schliffvorbereitung sind einige Erfahrungen erforderlich. Wird die Probe entnommen oder das Gefüge durch Entnahme oder Schliffherstellung verändert, so kann das zu Fehldeutungen führen. Wichtig ist natürlich, daß man das, was man sichtbar gemacht hat, auch deuten kann. Eine Härterei, der vorgeworfen wird, daß von ihr behandelte Fräser aus Schnellstahl an den Schneiden ausbrechen, kann Mikroschliffe aus den beschädigten Fräsern an einem Härteprüfgerät mit optischer Messeinrichtung metallographisch untersuchen und damit vielleicht schon die Schadensursache aufklären[1].
Wie wird Metallographie richtig geschrieben?
Wie wird jetzt das Wort Metallographie / Metallografie geschrieben, der Duden lässt beide Schreibweisen zu, ich persönlich bin der Meinung das nicht jede Rechtschreibreform auch immer den Sinn des reformierten Wortes verbessert (man kann auch verschlimmbessern), das Wort setzt sich aus zwei Teilen zusammen:
- Metallo = ist aus dem griechischen μέταλλο = Metallo
- graphie = das Suffix-graphie (-γραφή -graphē oder -γραφία -graphía) stammt von dem griechischen Verb γράφειν gráphein „schreiben, zeichnen“. Hier wird immer etwas geschrieben, beschrieben, aufgezeichnet oder verzeichnet.
historisch stammt die Wortbildung also aus dem griechischen, daher wird Metallographie also eindeutig mit "ph" geschrieben. Im Englischen wird es Metallography, im Französischen Métallographie geschrieben, auch mit "ph".
Was ist aber dann die Materialographie?
Unter dem Begriff der Materialographie werden alle Methoden zur Gefüge- und Strukturuntersuchung von Werkstoffen zusammengefasst. Das beinhaltet die Probenpräparationsverfahren, die verschiedensten mikroskopischen Methoden einschließlich der Elektronenmikroskopie und der hoch auflösenden Röntgen-Computertomographie sowie die Analyse, Bewertung und Dokumentation der mikroskopischen Untersuchungsergebnisse.[2]
- Dies ist eine im deutschen Sprachgebrauch eingeführte neue Definition, die den Begriff der Metallographie nicht ersetzen kann, in diesem WIKI wird der Begriff ausdrücklich nicht benutzt.
Historie
Seit ca. 150 Jahren ist die Metallographie in der Metallkunde ein nicht mehr weg zu denkendes Verfahren der Gefügebeschreibung. Viele Nutzer der Metallographie Wissen nicht das bereits die frühen Forscher wie Sorby, Martens, Osmond, Heyn, Bain, Stead, zwischen 1860 und 1930, fast alle heute bekannten Gefüge definiert und beschrieben haben. Um diese bedeutenden Wissenschaftlern vorzustellen, sind in der nachfolgenden Tabelle die wichtigsten Wissenschaftler und die nach Ihnen benannten Gefüge aufgeführt.
Jahr | Wer | Benannter Gefügebestandteil - im Englischen mit Endung (e) | Was |
---|---|---|---|
1826-1908 | Sir Henry Clifton Sorby | Sorbit(e) | Mikroskopische Studien an Meteoriten und Eisen und Stahl, 1863
1863, er benutzte als erster Säuren um die mikroskopische Struktur von Eisen und Stahl zu studieren. Mit dieser Technik war er der erste in England dem es gelang zu verstehen, dass eine kleine, aber präzise Menge an Kohlenstoff Stahl seine Stärke gibt. |
1843-1902 | Sir William Chandler Roberts-Austen | Austenit(e) | Er wurde zum Assistenten des Meisters der Münzstätte und dann Apotheker der Königlichen Münze (1869), Professor für Metallurgie an der Minenschule (1880) und Chemiker und Prüfer zur Königlichen Münze (1882-1902) ernannt. Er entwickelte Verfahren für die Analyse von Legierungsbestandteilen und ein automatisches Aufzeichnungspyrometer, das verwendet wird, um Temperaturänderungen in Öfen und geschmolzenen Materialien aufzuzeichnen. Er wurde eine Autorität über die technischen Aspekte der Münzprägung. Seine Arbeit hatte viele praktische und industrielle Anwendungen. |
1867-1922 | Friedrich Emil Heyn | Friedrich Emil Heyn war Eisenhütteningenieur und gilt als Nestor der Technikwissenschaften Metallkunde und Metallographie. Er war der Begründer neuer mikroskopischer Untersuchungsverfahren für Metalle und Legierungen.
| |
1891-1971 | Edgar Collins Bain | Bainit(e) | Er war ein US-amerikanischer Metallurg und Mitglied der National Academy of Sciences. Er arbeitete für die US Steel Corporation in Pittsburgh (Pennsylvania) und forschte auf dem Gebiet des Legierens und der Wärmebehandlung von Stählen. Die Gefügeform Bainit ist nach ihm benannt. 1923 wurde er Fellow der American Physical Society.
|
1848-1922 | Henry Marion Howe | Hardenit(e)[3] | Howe war der Doyen und Nestor der amerikanischen Metallurgen, er war sowohl in Amerika als auch auf dem Kontinent in Europa zu seiner Zeit sehr bekannt[4].
Von Howe wurde Hardenit als das Gefüge bezeichnet das die Härte erzeugt, später hat Osmand dann zu Ehren von Martens es in Martensite umbenannt |
1850-1914 | Adolf Karl Gottfried Martens | Martensit(e)[5] | Martens studierte Maschinenbau, hatte sich aber schon frühzeitig intensiver mit der Entwicklung der Werkstoffprüfung für die Konstruktion beschäftigt. 1879 wurde Martens Professor an der Technischen Hochschule Charlottenburg. Dort war er langjähriger Direktor der Mechanisch-Technischen Versuchsanstalt und seit 1884 Direktor des Materialprüfungsamtes, das 1904 von Charlottenburg nach Dahlem verlegt wurde. Martens war einer der Väter der Materialforschung und -prüfung und begründete die Wissenschaft der Werkstoffprüfung in Deutschland. Er war einer der Vorreiter beim Einsatz des Mikroskops als Analysewerkzeug für Metallgefüge. Von ihm stammen wesentliche Beiträge zur Materialforschung, u. a. durch Verbesserung des Metallmikroskops und durch Arbeiten zur Konstitution von Metalllegierungen. 1899 veröffentlichte er das damals hoch beachtete Handbuch der Materialkunde. Er konstruierte zahlreiche Werkstoffprüfmaschinen.
|
1849-1912 | Floris Osmond | Osmondit(e)[6] | War ein französischer Wissenschaftler und Ingenieur. Er gilt als einer der Begründer der Metallografie, er trug entscheidend zur Aufklärung der Allotropie des Eisens bei. Verschiedene Gefügebestandteile des Stahls wurden durch ihn benannt, so z.B. der Martensit nach A. Martens. [5]
|
1825-1911 | Louis Joseph Troost | Troostit(e)[5] | Ein Chemiker der eigentlich mit Metallen nur insoweit zu tun hatte das Osmond in seinem Labor seine ersten Untersuchungen machte. Ihm zu Ehren hat er den Gefügebestandteil Troostite benannt.
|
1837-1906 | Karl Heinrich Adolf Ledebur | Ledeburit | 1859 erhielt Ledebur seine Zulassung zum Examen als Hüttenoffiziant. Nach Ablegung seiner Prüfung nahm er 1862 seine Tätigkeit als Hüttenaspirant am Hüttenwerk des Grafen Otto zu Stolberg-Wernigerode in Ilsenburg auf. Zwischen 1869 und 1871 leitete Ledebur den Betrieb der Eisengießerei Schwarzkopff in Berlin, dann wechselte er an die Gräflich Einsiedelschen Hüttenwerke in Gröditz, wo er zuletzt als Hüttenmeister tätig war. Nach 13 Jahren in verantwortlicher Praxis wurde er 1884 an der Königlichen Bergakademie in Freiberg/Sachsen Professor für Hüttenkunde und Gießereiwesen.[7]
|
1754-1849 | Alois Beckh von Widmanstätten | Widmanstätten-Struktur | Das Widmanstätten-Gefüge, benannt nach dem österreichischen Naturwissenschaftler Alois von Beckh-Widmanstätten. |
1851-1923 | John Edward Stead | Steadit(e) | Ein Britischer Metallurge, 1903 in die Royal Society berufen, hat für Bolckow Vaughan gearbeitet und war Präsident des Iron and Steel Institute.
Im zu Eheren wurde das Phosphiteutektikum als Steadit bezeichnet, es ist das ternäre Eutektikum bestehend aus den drei Elementen Eisen, Phosphor und Kohlenstoff (90,71 % Fe + 6,89 % P + 2,4 % C bei 950 °C). In der Regel gilt Steadit als ein Gefügefehler im Gusseisen.[8]
|
1890-1976 | Angelica Schrader | Nach der Ausbildung als Metallografin im Berliner Lette-Verein wurde Angelica Schrader 1909 die erste Metallographin in Deutschlands erstem metallografischen Labor des Instituts für Metallkunde der TH Berlin. Sie arbeitete dort wissenschaftlich unter dem Institutsvorsteher Prof. Dr.-Ing. habil. Heinrich Hanemann bis zum Kriegsende 1945. Schraders erste Veröffentlichungen erschienen in den 1920er Jahren. Sie beteiligte sich an der Entwicklung der Metallmikroskopie nach Henry Le Chatelier und Emil Heyn und gab gemeinsam mit Prof. Hanemann den Atlas metallographicus heraus (ab 1927), mit dem sie allgemein bekannt wurde. 1937 wurde sie ohne zusätzliches Studium zum Dr. Ing. promoviert. Ab 1939 erschien ihr Ätzheft, in dem sie auf Grund ihrer praktischen Erfahrungen ihre Anweisungen zur Herstellung von Metallschliffen, die Ätzmittel und die Verfahren zur Gefügeentwicklung zusammenstellte.
| |
Definition der Metallographie
Wie aber wird die Metallographie jetzt definiert? Hierzu nachfolgend die über die letzten 130 Jahre genutzten Definitionen.
Wer | Definition |
---|---|
Henry Clifton Sorby | Jedes Gefüge hat seine Geschichte.[9] |
Adolf Martens | lm Kleingefüge eines Metalls oder einer Legierung ist eine Art Urkunde niedergelegt, in welcher die Entwicklungsgeschichte des Materials bis zu einem gewissen Grad aufgezeichnet ist. Es handelt sich darum die Sprache in welcher diese Urkunde verfasst ist, zu ergründen und dies ist das Ziel der Metallographie. Ist dieses Ziel erreicht, so muß es gelingen, aus dem Kleingefüge heraus auf die Behandlung, der das Material unterworfen wurde gewisse Rückschlüsse zu ziehen, wodurch die Metallographie zu einem unentbehrlichen Hilfsmittel der Materialprüfung wird.[9] |
Emil Heyn | Metallographie ist der Gesamtname für die ganz große Lehre von den Metallen und ihren Legierungen. Das mikroskopische Bild ist eine Sprache, wie die der Hieroglyphen. Man soll nichts hineinphantasieren, sondern es muß wissenschaftlich festgestellt werden, was sie bedeuten, sonst gelangt man zu Irrtümern. Das Gefüge ist gekennzeichnet durch Größe, Form und Art der Unregelmäßigkeiten im inneren Aufbau der Materialien, die nicht mit dem bloßen Auge zu erkennen sind, sondern erst mit Hilfe von Mikroskopen sichtbar werden. Im Gefüge existieren außerdem noch zahlreiche Informationen, die zu einem besseren Verständnis metallkundlicher Phänomene beitragen.[9] |
Aktuelle Definition | Die Metallographie ist eine metallkundliche Untersuchungsmethode. Sie umfasst die optische Untersuchung einer Metallprobe mit dem Ziel einer qualitativen und quantitativen Beschreibung des Gefüges. Es sind dabei makroskopische, mikroskopische und elektronenmikroskopische Gefügebetrachtungen zu unterscheiden. |
Duden 2017 | Teilgebiet der Metallkunde, das mit mikroskopischen Methoden Struktur und Eigenschaften der Metalle untersucht[10]. |
metallography—that branch of science which relates to the constitution and structure, and their relation to the properties, of metals and alloys. |
In der Werkstoffkunde gehört Eisen zur Gruppe der Eisenmetalle, die unterteilt ist in Gusseisen und Stahl. Die Unterscheidung beruht darauf, dass Gusseisen einen Kohlenstoff-Gehalt von über 2,06 % hat und nicht plastisch verformbar, insbesondere nicht schmiedbar ist, während Stahl einen Kohlenstoff-Gehalt von weniger als 2,06 % hat und verformbar, also schmiedbar ist. Diese allein auf den Bestandteilen der Eisenlegierung beruhende Definition ist seit dem frühen 20. Jahrhundert gebräuchlich.
Um bei Eisen und Stahl die Gefügebestandteile richtig identifizieren zu können, müssen beim Auswerter gute Kenntnisse des Aufbaus der Gefüge und ihrer Entstehung vorhanden sein. Eisen-Kohlenstoff-Diagramm E-K-D [11] und Zeit Temperatur Umwandlungs Diagramm ZTU [12], (im englischen TTT, "Time Temperature Transformation") sollten feste Begriffe sein und Ihre Anwendung dem Auswerter vertraut sein.
Metallographische Probenpräparation – die Schliffherstellung
Probenentnahme
Die Probenentnahme muss dem Untersuchungszweck angepasst sein. Bei Bauteilen die eine irgendwie geartete Vorzugrichtung haben wie z.B. gewalztes Blech muss bei der Probenentnahme zwischen Quer-, Längs- und Flachschliff unterschieden werden. Durch die Probenentnahme darf das Gefüge nicht verändert werden. So muss bei mechanischer Abtrennung durch Anwendung geeigneter Kühlmittel die Probenerwärmung möglichst klein gehalten werden, um Gefügebeeinflussungen zu verhindern. Starke Erwärmung oder Formänderung sind auf jeden Fall zu vermeiden.[13]
Vorzugsrichtung der Probe
Die Schlifflage gibt entscheidend dazu Auskunft wie das Gefüge gesehen wird. Grundregel der Schlifflage ist die Unterscheidung zwischen:
- Längsschliff
- Flachschliff
- Querschliff
Gut sichtbar ist das nur bei niedriger Vergrößerung im Mikroskop die Vorzugsrichtung sicher erkennbar ist, bei einer Mikroskopvergrößerung von 500:1 ist die Vorzugsrichtung mehr zu erahnen als zu erkennen. Ohne die Angabe der Lage der Vorzugsrichtung wird eine vergleichende Gefügeuntersuchung zwischen verschiedenen Laboren zu verschiedenen Gefügebeschreibungen führen obwohl alle Beteiligten die gleiche Probe betrachten, einziger Unterschied ist die Schlifflage zur Vorzugsrichtung. Eine Korngrößenbestimmung wird in diesem Fall nie stimmen können.[13] Beim nachfolgendem Beispiel ist gut erkennbar welchen Einfluss die Schlifflage auf das dargestellte Gefüge hat. So führt z.B. die Bestimmung der Korngröße abhängig von der Schlifflage zu deutlich unterschiedlichen Ergebnissen. Auch gibt es Prüfungen bei denen die Schlifflage genau definiert ist[14].
Schlifflage | Bilder der Gefügeausbildung nach Schlifflage.[13] |
Pfannkuchenaufbau von Ferrit und Perlitbändern in Bandstahlblech, nach [3] |
Verfahren der Probenentnahme
Proben können durch verschiedene Verfahren entnommen werden, dies sind unter anderem:[13]
Trennen | Schneiden | Sägen | Brennen |
Grundsätzlich darf durch die Probenentnahme keine Veränderung des Probematerials erfolgen, deshalb ist bei diesem teil der metallographischen Präparation größte Sorgfalt geboten.
Einbetten, bzw. Einfassen der Probe
Zur besseren Handhabung und/ oder zum Rand- oder Kantenschutz werden die Proben eingefasst oder eingebettet. [13]
Man unterscheidet verschiedene Methoden:
Schleifen + Polieren
Zur Sichtbarmachung des Gefüges ist eine absolut plane, d.h. polierte Oberfläche Voraussetzung. Hierzu wird die Oberfläche vorsichtig schrittweise geschliffen, wodurch eine eventuell vorhandene verformte Schicht abgetragen werden soll. Das Schleifen erfolgt von Hand mit Schleifpapier, das auf einer ebenen Platte oder auf einer Drehscheibe aufliegt, oder mit einer automatischen Schleif- und Poliermaschine. Beim ersten Schleifschritt wird normalerweise grobes Schleifpapier benutzt, welches anschließend schrittweise durch Schleifpapier mit feineren Körnungen ersetzt wird. Nach jedem Schleifprozess wird die Probe um 90° gedreht und in der gleichen Schleifrichtung weitergeschliffen, bei automatischen Schleifgeräten wird die Probe permanent gedreht. Auf diese Weise werden die Schleifriefen des vorher benutzten Papiers beseitigt. Wegen der Gefahr unzulässiger Erwärmung darf die Metallprobe nicht zu kräftig auf die Unterlage aufgedrückt werden. Die Schmier- und Kühlflüssigkeit soll gleichzeitig das Schleifpapier und die Probe von ausgebrochenen Schleifkörnern reinigen.
Danach erfolgt das Polieren, durch Polieren werden die vom Schleifprozess zurückbleibenden Schleifriefen beseitigt sowie eine evtl. noch vorhandene dünne Verformungsschicht weiter abgetragen. Auf Samt- oder Wolltüchern aufgetragene geschlämmte Tonerde (AI203), Magnesia Usta (MgO), Poliergrün (Cr203), Polierrot (Fe203) oder heute fast ausschließlich Diamantsuspensionen, dienen dafür als Poliermittel.
Die Elastizität der Poliertücher beeinflusst die Poliergüte. Durch Polieren mit einem weichen Tuch entsteht eine riefenfreie Oberfläche, dabei runden sich die Kanten mehr oder weniger ab, auch ist mit RiefenbiIdung durch Abtragen weicher nichtmetallischer Einschlüsse zu rechnen. Durch Polieren mit einem härteren Tuch lässt sich die Kantenabrundung und Reliefbildung eher vermeiden, man erhält aber keine absolut kratzerfreie Oberfläche. Poliertücher werden während des Polierprozesses mit destilliertem Wasser oder bei Verwendung von Diamantsuspensionen mit alkoholischem oder wässrigem Lubricant geschmiert. Auch nach jedem Polierprozess wird die Probe um 90° gedreht und in der gleichen Polierrichtung weiterpoliert, bei automatischen Poliergeräten wird die Probe permanent gedreht. Auf diese Weise werden die Schleif- und Polierspuren des vorherigen Arbeitsganges entfernt.
Im polierten Zustand lassen sich unter dem Mikroskop bereits nichtmetallische Einschlüsse, wie Karbide, Sulfide oder Oxyde im Stahl, Graphit im Grauguss, oder Unregelmäßigkeiten, wie Poren, Risse, Lunker u.a., jedoch keine Gefüge erkennen. [13]
Schleif-/ Polierrichtugsdrehung auf dem Schliff |
Manuelles Schleif-/ Poliergerät |
Automatisches Schleif-/ Poliergerät |
Ätzen
Zu einer Gefügeentwicklung ist Ätzen notwendig. Da der chemische Angriff des Ätzmittels auf die verschieden Gefügebestandteile von deren Orientierung und chemischen Zusammensetzung abhängt, wird Reflexionsverhalten der Gefügebestandteile so verändert, dass eine eindeutige Unterscheidung möglich wird. Um ein zu starkes Angreifen des Ätzmittels zu verhindern, wird es z.B. mit Alkohol, Glyzerin oder Glykol verdünnt. Bei Ätzmitteln, welche die Haut angreifen, färben oder verätzen können, werden die Proben mit Hilfe von Ätzzangen aus beständigem Material, wie nichtrostendem Stahl und Nickel, angeätzt. Danach wird die Probe mit Wasser und Alkohol abgespült, in warmer Luft gründlich getrocknet und unter dem Mikroskop betrachtet. Die nachfolgende Tabelle gibt einen groben Überblick über die gebräuchlichsten Ätzmittel für Eisen und Stahl. [13]
Ätzmittel | Zusammensetzung | Anwendung |
---|---|---|
Nital | 1-3%ige Salpetersäure, wässrig oder alkoholisch | Mikroätzmittel zur Gefügeentwicklung des Mikrogefüges (Gefügeentwicklung) zur Verwendung gebracht.
Universal anwendbar, unlegierte- und niedriglegierte Stähle, Vergütungsstähle, Gusseisen etc. |
Pikral | 1-5%ige Pikrinsäure, alkoholisch | Mikroätzmittel zur Gefügeentwicklung von z.B. Werkzeugstählen und weichgeglühten Kohlenstoffstählen, zur Darstellung feinster Gefügedetails. |
V2A Beize | 100 ml destilliertes Wasser +
100 ml konzentrierte Salzsäure + 10 ml konzentrierte Salpetersäure + 0,3 ml Vogels Sparbeize |
Mikroätzmittel für hochlegierte Chrom-Nickelstähle (Typ V2A / V4A Stähle), artgleiche Schweißzusatzwerkstoffe und austenitische Gusswerkstoffe. Mit dem Ätzmittel kann man verschiedene Gefüge und Phasen entwickeln (z.B. Korngrenzenausscheidungen, Sigma-Phase etc.). Austenit und Delta-Ferrit sind genau so anätzbar wie Karbidausscheidungen. Beste Ergebnisse erreicht man durch eine Erwärmung des Ätzmittels (ca. 50°C – 70°C) und anschließende bewegte Tauchätzung. |
Ätzmittel nach Bechet-Beaujard | 88 g Pikrinsäurelösung 1,2 %
und 5 g Natriumdodecylbenzylsulfonat /l in Wasser |
Mikroätzmittel zur Sichtbarmachung der ehemaligen Austenitkorngrenzen, das Ätzmittel ist anwendbar an Prüfstücken, die im gehärteten oder vergüteten Zustand vorliegen. Zur mikrofotografischen Bestimmung der scheinbaren Korngrenzen. Die Ätzdauer beträgt je nach Stahlsorte ca. 20 – 30 Minuten. |
Makroätzung | 5%ige Salpetersäure, wässrig | Makroätzmittel, makroskopischen Schweißnahtätzung unlegierter und niedriglegierter Stähle und zur Darstellung von Seigerungszonen und Aufkohlungszonen |
Makroätzung | 10-15%ige Salpetersäure, wässrig | Makroätzmittel, Sichtbarmachung gehärteter Randzonen, ferritische Schweißnahtverbindungen (Stahl und Stahlguss), wie 5%ige aber aggressiver |
Ätzmittel nach Oberhoffer | 100 cm³ Wasser - H2O
100 cm³ Alkohol - C2H5OH 3 cm³ Salzsäure - HCl 0,2 g Kupfer(II)-chlorid - CuCl2 * 2 H2O 3 g Eisen(III)-chlorid - FeCl3 * 6 H2O 0,1 g Zinn(II)-chlorid - SnCl2 * 2 H2O |
Makroätzmittel zur Sichtbarmachung von Primärstrukturen (Faserverlauf). Dient zur Sichtbarmachung der Phosphorverteilung bei Bau- und Werkzeugstählen. Für die Ätzung muss die Probe gut geschliffen und poliert sein. Durch mehrmaliges Zwischenpolieren und erneutem Ätzen wird der Kontrast erhöht. Die phosphorreichen Stellen bleiben glatt und die phosphorarmen Stellen werden aufgeraut. Auf dem phosphorarmen Ferrit wird ein Kupferniederschlag verhindert und dadurch ein anätzen ermöglicht. Die phosphorreichen Stellen werden mit einem Kupferniederschlag belegt und ein Ätzen so verhindert. Im Schliff sind die Phosphorreichen, geseigerten Stellen, hell. |
Ätzmittel nach Adler | Lösung A: 3 g Ammoniumchlorocuprat + 25 ml destilliertes Wasser
Lösung B: 15 g Eisen(III)-chlorid + 50 ml konzentrierte Salzsäure Nachdem sich alles vollständig gelöst hat, Lösung B in A geben |
Makroätzmittel für hochlegierte, korrosionsbeständige Stähle sowie für Nickellegierungen, Primär zur makroskopischen Schweißnahtbeurteilung zu verwenden. Kontrastreiche Darstellung der einzelnen Schweißlagen und der Wärmeeinflusszonen. Als Warmätzmittel können hiermit auch hochlegierte Sonderstähle angeätzt werden. |
Fragen zu Ätzmittel hier hilft
Betrachten
Makroskopie
Mikroskopie
Gefügeauswertung
Die Gefügeauswertung ist das wirklich schwierigste in der Metallographie. Zwei Metallographen können, da es sich um eine Erfahrungswissenschaft handelt, trefflich über die genaue Gefügezusammensetzung einer Probe streiten. Worüber Sie sich aber nicht Streiten sollten ist die genaue Bezeichnung der Gefügebestandteile. Daher sollte zumindest die minimale Standard die korrekte Gefügebezeichnung nach Norm erfüllt werden.
Gefügeauswertung erforderliche Informationen
Bevor Sie anfangen ein Bauteil oder Halbzeug zu Prüfen, müssen Sie mindestens folgende Informationen haben oder diese sollten Ihnen zugänglich sein:
- welcher Werkstoff wurde eingesetzt, ohne Wissen welcher Werkstoff betrachtet wird ist Metallographie eine Märchenstunde
- Werkstoff-, Zeichnungs- oder Bestellvorschrift
- welches Wärmebehandlungsverfahren wurde durchgeführt
- welche mitgeltenden Werkstoff-, Produkt-, Prüf-, Werksnormen und Liefervorschriften gibt es
- Achtung, hier meine ich alle Normen und mitgeltenden Dokumente, Unkenntnis einer Vorschrift schützt nicht vor Strafe im Schadensfall. Das Wissen über Normen und Regelwerke ist eine Holschuld des Prüfers oder Prüflabors und keine Bringschuld des Auftraggebers, dieser weis nicht immer welche Vorschriften zur Prüfung anzuwenden sind. Immer beim Auftraggeber nachfragen welche Vorschriften mitgelten.
- seien Sie bei der Beschaffung dieser Informationen pingelig und lassen Sie sich von niemanden abwimmeln, weil es dem anderen zu lästig ist diese Informationen zu beschaffen. Rechtlich schützt Unwissenheit nicht vor Strafe (Ignorantia legis non excusat). Dies bedeutet der Prüfer als Fachmann / Experte muss Wissen , dass es weitere Prüfvorschriften geben kann und er muss sich diese beschaffen (Holschuld). Sie als Fachmann / Experte sind für alles verantwortlich was der Auftraggeber nicht weiß. Er hat sich ja an Sie, den Fachmann / Experte gewandt weil er davon ausgehen kann, dass Sie Ihn darüber informieren werden wenn noch weitere Informationen erforderlich sind. Verhalten Sie sich nicht wie ein Fachmann / Experte, kann dies weitreichende rechtliche Folgen haben, hier gilt dann "Unwissenheit schützt nicht vor Strafe". Denken Sie daran, wenn ein Schaden vor Gericht landet heist es, "vor Gericht und auf hoher See sind Sie in ... Hand".
Gefügeauswertung Grundregeln
Nachfolgend die wichtigsten Grundregeln die bei der Gefügeauswertung immer beachtet werden sollten:
- bevor Sie anfangen Gefüge auszuwerten, prüfen Sie ob alle Prüfvorschriften und mitgeltenden Unterlagen vorhanden sind
- lesen Sie die Prüfvorschriften und mitgeltenden Unterlagen
- führen Sie nie eine Gefügeauswertung durch, wenn Sie nicht verstanden haben was geprüft werden soll, Sie sind der Fachmann / Experte der es wissen muss
- führen Sie eine Gefügeauswertung nicht durch wenn unklar ist wie das Prüfverfahren anzuwenden ist
- führen Sie niemals eine Gefügeauswertung durch wenn Sie folgende Informationen nicht haben:
- den Werkstoff
- die durchgeführte Wärmebehandlung
- Festigkeitswerte (Härte, Zugfestigkeit usw.)
- benutzen Sie die in den Normen und Fachbüchern angegebenen Gefügedefinitionen und Fachbegriffe, kreieren Sie keine neuen Beschreibungen/Wörter, dass versteht dann niemand mehr.
- benennen Sie niemals Gefügebestandteile die Sie nicht sicher erkannt haben, sagen Sie lieber das Sie etwas nicht einordnen können als das falsche zu sagen.
- machen Sie aus dem Prüfbericht keine langatmige Erzählung, in der Kürze die Würze.
Fachbegriffe und Definitionen
Um eine einwandfreie Bestimmung metallischer Gefüge und Prüfungen durchzuführen muss man als erstes einmal eine Sprache Sprechen um Missverständnisse zu vermeiden. Sich an die in den Regeln der Technik benutzten Fachwörter halten und keine anderen Pseudo- oder Phantasiebezeichnungen benutzen, sollte selbstverständlich sein ist es aber leider nicht. Die Fachbegriffe zu allen Themen sind in Normen, Kompendien und Fachbüchern verzeichnet. Da wo es Normen gibt z.B. DIN EN ISO 4885, sind die korrekten Normbegriffe zu verwenden. Durch das falsche Anwenden der entsprechenden Fachbegriffe können die verschiedensten Fehlinterpretationen entstehen.
- Um alle Missverständnisse zu vermeiden die bei der Interpretation von Fachbegriffen entstehen, habe ich mir die Mühe gemacht aus unterschiedlichen Literaturstellen und Normen einen Glossar über die Wortbedeutungen der einzelnen Fachbegriffe der Werkstoffprüfungen, der Wärmebehandlungsverfahren und weiterer Bedeutungen mit Ihren Definitionen, zu erstellen. Die in diesem Glossar angegebenen Definitionen stammen aus den relevanten DIN EN ISO Normen und aus Fachbüchern und erheben keinen Anspruch auf Vollständigkeit, werden aber ständig ergänzt.
- Diesen Glossar können Sie bei mir kostenlos anfordern, unter - info@arnold-horsch.de
Durch das falsche Anwenden der entsprechenden Fachbegriffe können die verschiedensten Fehlinterpretationen entstehen. Um alle Missverständnisse zu vermeiden die bei der Interpretation von Begriffen entstehen, werden nachfolgend die einzelnen Gefügebestandteile und weitere allgemein Fachbegriffe Bergriffe der Metallographie mit Ihren Definitionen, aufgelistet. Die hier angegebenen Definitionen stammen aus den relevanten internationalen Normen und aus Fachbüchern. Diese Zusammenfassung erhebt keinen Anspruch auf Vollständigkeit und wird ständig erweitert.
Definition der Gefügebestandteile
Die genaue Definition der Gefügebestandteile und Phasen und deren Beschreibung ist eine eigene Wissenschaft, die Metallographie. Diese Gefüge sollen nachfolgend in einem eigenen Kapitel erklärt und definiert werden. |
Allgemeine Bergriffen der Metallographie
Neben den Definitionen der Gefügebestandteile, gibt es noch ein Vielzahl weiterer Fachbegriffe die in der Metallographie verwendet werden. Diese sollen nachfolgend in einem eigenen Kapitel erklärt und definiert werden. |
Zu den allgemeinen Bergriffen der Metallographie |
Einzelnachweise
<references> [8] [13] [9] [5] [3] [15]
- ↑ Metallographie in der Schadenuntersuchung, Egon Kauczor, Springer Verlag Berlin Heidelberg 1979, Seite 1
- ↑ Homepage Deutsche Gesellschaft für Materialkunde e.V., 2017.01.24
- ↑ 3,0 3,1 3,2 Leonard Ernest Samuels, Light Microscopy of Carbon Steels, ASM International, 1999
- ↑ Nature 109, 721-721 (03 June 1922)
- ↑ 5,0 5,1 5,2 5,3 Floris Osmond, MICROSCOPIC ANALYSIS OF METALS, CHARLES Griffin & COMPANY,Limited , London, 1904
- ↑ E.Wetzel, E. Heyn, Die Theorie der Eisen-Kohlenstoff-Legierungen: Studien über das Erstarrungs- und Umwandlungsschaubild, Springer Verlag, Berlin, 1923
- ↑ https://de.wikipedia.org/wiki/Adolf_Ledebur
- ↑ 8,0 8,1 Dr. Sc. Hermann Schumann et. al., Metallographie,11. Auflage, VEB Fachbuchverlag für Grundstoffindustrie, Leipzig
- ↑ 9,0 9,1 9,2 9,3 Zu Henry Clifton Sorby, Adolf Martens und Emil Heyn. Klassische Metallographie, Materialforschungen, Werkstoffprüfungen, Metallkunde, Metallographie: Beitrag zur Technikgeschichte (13), GRIN Verlag, 2010
- ↑ Duden Online, 2017.01.24
- ↑ Eisen-Kohlenstoff-Diagramm E-K-D, Wissensfloater, Bergische Universität Wuppertal
- ↑ Zeit Temperatur Umwandlungs Diagramm ZTU, Wissensfloater, Bergische Universität Wuppertal
- ↑ 13,0 13,1 13,2 13,3 13,4 13,5 13,6 13,7 Arnold Horsch, Seminar Metallographie in der Praxis, Teil 1, Arnold Horsch e.K., Remscheid
- ↑ DIN EN ISO 2639, Stahl - Bestimmung und Prüfung der Einsatzhärtungstiefe, Beuth Verlag GmbH, Berlin
- ↑ ASTM E7, Standard Terminology Relating to Metallography