Korngrößenbestimmung nach DIN EN ISO 643

Aus Arnold Horsch e.K Wissensdatenbank
Wechseln zu: Navigation, Suche
Seminare

Ich biete zu diesem Thema die Seminare Metallographie in der Praxis Teil 1 und Teil 2 an.
Schauen Sie auf meiner Homepage vorbei und sichern Sie sich Ihren Platz! Metallo-1+2-1.jpg

Seite im Aufbau Fehler sind möglich


Verlinkte Seiten

Stahl – Mikrophotographische Bestimmung der erkennbaren Korngröße (ISO 643:2019, korrigierte Fassung 2020-03); Deutsche Fassung ISO 643:2020

Nationales Vorwort

Dieses Dokument (EN ISO 643:2020) wurde vom Technischen Komitee ISO/TC 17 „Steel“ in Zusammenarbeit mit dem Technischen Komitee CEN/TC 459 „ECISS – Europäisches Komitee für Eisen- und Stahlnormung“ erarbeitet, dessen Sekretariat von AFNOR (Frankreich) gehalten wird.

Das zuständige deutsche Normungsgremium ist der Gemeinschaftsausschuss NA 062-01-31 GA „Gemeinschaftsarbeitsausschuss NMP/FES: Metallographische Prüfverfahren“ im DIN-Normenausschuss Materialprüfung (NMP).

Für die in diesem Dokument zitierten internationalen Dokumente wird im Folgenden auf die entsprechenden deutschen Dokumente hingewiesen:
ISO 3785 siehe DIN EN ISO 3785
Aktuelle Informationen zu diesem Dokument können über die Internetseiten von DIN (www.din.de) durch eine Suche nach der Dokumentennummer aufgerufen werden.

Änderungen Gegenüber DIN EN ISO 643:2013-05 wurden folgende Änderungen vorgenommen:
a) 7.1.2 überarbeitet;
b) der ursprüngliche Anhang B wurde gestrichen und der ehemalige Anhang C wurde in Anhang B umgewandelt;
c) Dokument redaktionell überarbeitet.
Frühere Ausgaben

  • DIN 50601: 1985-08
  • DIN EN ISO 643: 2003-09
  • DIN EN ISO 643 Berichtigung 1: 2004-07
  • DIN EN ISO 643: 2013-05

Nationaler Anhang NA (informativ)
Literaturhinweise DIN EN ISO 3785, Metallische Werkstoffe — Kennzeichnung von Probenachsen in Bezug zur Halbzeuggefügetextur

Europäisches Vorwort

Dieses Dokument (EN ISO 643:2020) wurde vom Technischen Komitee ISO/TC 17 „Steel“ in Zusammenarbeit mit dem Technischen Komitee CEN/TC 459/SC 1 „Prüfverfahren für Stahl (andere als chemische Analysen)“ erarbeitet, dessen Sekretariat von AFNOR gehalten wird.

Diese Europäische Norm muss den Status einer nationalen Norm erhalten, entweder durch Veröffentlichung eines identischen Textes oder durch Anerkennung bis Juli 2020, und etwaige entgegenstehende nationale Normen müssen bis Juli 2020 zurückgezogen werden.

Es wird auf die Möglichkeit hingewiesen, dass einige Elemente dieses Dokuments Patentrechte berühren können. CEN ist nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

Dieses Dokument ersetzt EN ISO 643:2012.

Entsprechend der CEN-CENELEC-Geschäftsordnung sind die nationalen Normungsinstitute der folgenden Länder gehalten, diese Europäische Norm zu übernehmen: Belgien, Bulgarien, Dänemark, Deutschland, die Republik Nordmazedonien, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Kroatien, Lettland, Litauen, Luxemburg, Malta, Niederlande, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, Schweiz, Serbien, Slowakei, Slowenien, Spanien, Tschechische Republik, Türkei, Ungarn, Vereinigtes Königreich und Zypern.

Anerkennungsnotiz
Der Text von ISO 643:2019, korrigierte Fassung 2020-03 wurde von CEN als EN ISO 643:2020 ohne irgendeine Abänderung genehmigt.

Anwendungsbereich

Dieses Dokument legt mikrophotographische Verfahren zur Bestimmung der erkennbaren Ferrit- oder Austenitkorngröße von Stählen fest. Es werden Verfahren zum Sichtbarmachen der Korngrenzen und zur Schätzung der mittleren Korngröße von Proben mit einer gleichmäßigen Größenverteilung beschrieben. Obwohl die Körner dreidimensional sind, können sie durch eine metallographische Schnittebene an einem beliebigen Punkt am Rand eines Korns bis einschließlich durch seinen größten Durchmesser so durchschnitten werden, dass auch in einer Probe mit völlig konstanter Korngröße in der zweidimensionalen Ebene eine erkennbare Bandbreite von Korngrößen erzeugt wird.

Normative Verweisungen

Die folgenden Dokumente werden im Text in solcher Weise in Bezug genommen, dass einige Teile davon oder ihr gesamter Inhalt Anforderungen des vorliegenden Dokuments darstellen. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen). ASTM E112, Standard Test Methods for Determining Average Grain Size

Begriffe

Für die Anwendung dieses Dokuments gelten die folgenden Begriffe. ISO und IEC stellen terminologische Datenbanken für die Verwendung in der Normung unter den folgenden Adressen bereit:

Körner

Korn

geschlossene, polygonale Form mit mehr oder weniger gekrümmten Seiten, die auf einer polierten und auf geeignete Weise für die mikrophotographische Untersuchung vorbereiteten Querschnittsfläche sichtbar gemacht werden kann

Austenitkorn

Kristall mit kubisch flächenzentriertem Gitter, das Glühzwillinge enthalten kann

Ferritkorn

Kristall mit kubisch raumzentriertem Gitter, das keine Glühzwillinge enthält

Anmerkung 1 zum Begriff:
Für unlegierte Stähle mit einem Kohlenstoffgehalt von 0,25 % oder weniger wird die Ferritkorngröße im Allgemeinen geschätzt. Wenn möglicherweise vorhandene Perlitinseln Maße haben, die den Maßen der Ferritkörner entsprechen, werden diese Inseln als Ferritkörner gezählt.

Allgemeines

Korngrößen Kennzahl

Zahl G.jpg, die positiv, Null oder möglicherweise negativ ist und aus der mittleren Anzahl Mklein.jpg der Körner (3.1.1) bestimmt wird, die auf 1 mm2 Querschnittsfläche der Probe gezählt werden

Anmerkung 1 zum Begriff:
Definitionsgemäß ist G.jpg = 1 für Mklein.jpg = 16; die anderen Korngrößen-Kennzahlen ergeben sich aus Gleichung (1):

DIN-Formel1.jpg

Linienschnittpunkte mit Körnern

Ngross.jpg
Anzahl der von einer entweder geradlinigen oder kreisförmigen Messlinie durchquerten Körner (3.1.1)

Anmerkung 1 zum Begriff: Siehe Bild 1.
Anmerkung 2 zum Begriff: Gerade Messlinien enden üblicherweise innerhalb eines Korns. Diese Endsegmente zählen als 1/2 Korn. N-.jpg ist der Mittelwert der bei einer Anzahl von Auswertungen ermittelten Anzahl Körner, die von einer zufällig angeordneten Messlinie geschnitten werden. N-.jpg wird durch die wahre Länge der Messlinie NL.jpg, dividiert, um die Anzahl der je Längeneinheit der Messlinie geschnittenen Körner NL.jpg zu bestimmen, wobei die Länge der Messlinie im Allgemeinen in Millimeter (mm) gemessen wird.

Linienschnittpunkte mit Korngrenzen

Pgross.jpg
Anzahl der Schnittpunkte einer geraden oder kreisförmigen Messlinie mit den Korngrenzen

Anmerkung 1 zum Begriff: Siehe Bild 2.
Anmerkung 2 zum Begriff: P-.jpg ist die durchschnittliche Anzahl der gezählten Korngrenzen, die von einer Messlinie geschnitten werden, die nach dem Zufallsprinzip an verschiedenen Stellen angeordnet wird. P-.jpg wird durch die wahre Länge der Messlinie LT.jpg, dividiert, um die Anzahl der Linienschnittpunkte mit Korngrenzen je Längeneinheit der Messlinie PL.jpg zu bestimmen, wobei die Länge der Messlinie im Allgemeinen in Millimeter (mm) gemessen wird.

Symbole

Die verwendeten Symbole werden in Tabelle 1 angegeben.


Kurzbeschreibung

Die Korngröße wird durch mikrophotographische Untersuchung einer polierten Schnittfläche der Probe bestimmt, die nach einem der Stahlsorte und dem Ziel der Untersuchung entsprechenden Verfahren vorbereitet wurde.

ANMERKUNG Wenn bei der Bestellung oder in der Internationalen Produktnorm das Verfahren zum Sichtbarmachen des Korns nicht festgelegt wird, ist die Auswahl des Verfahrens dem Hersteller überlassen.

Die mittlere Korngröße wird gekennzeichnet

a) entweder durch eine Korngrößen-Kennzahl,
1) die üblicherweise durch einen Vergleich mit genormten Bildreihentafeln zur Bestimmung der Korngröße ermittelt wird,
2) oder durch die Ermittlung der mittleren Anzahl Körner je Flächeneinheit,

a) oder durch den Mittelwert des Linienschnittsegments.

DIN-Bild1.jpg

ANMERKUNG Anzahl Schnittpunkte der Körner Ngross.jpg der geraden Messlinie in einphasigem Korngefüge, wenn 6 Körner durchquert werden (siehe 6 Pfeile) und zwei Messlinienschnittsegmente innerhalb eines Korns enden (2 × 1/2 = 1 Ngross.jpg), d. h. es ist Ngross.jpg = 7.
Bild 1 — Beispiel für Linienschnittpunkte Ngross.jpg

DIN-Bild2.jpg

ANMERKUNG Anzahl Schnittpunkte der Korngrenzen Pgross.jpg mit einer geraden Messlinie in einphasigem Korngefüge, wobei die Pfeile auf 7 Messlinienschnittpunkte zeigen, d. h. es ist Pgross.jpg = 7
Bild 2 — Beispiel für Linienschnittpunkte 153x

Auswahl und Vorbereitung der Probe

Lage der Probenentnahmestelle

Wenn bei der Bestellung oder in der Internationalen Produktnorm die Anzahl der Proben und die Stelle, an der sie dem Produkt zu entnehmen sind, nicht festgelegt werden, ist die Auswahl dem Hersteller überlassen, obwohl bekannt ist, dass die Präzision der Korngrößenbestimmung bei Untersuchung einer größeren Anzahl an Proben zunimmt. Daher wird empfohlen, zwei oder mehr Schliffbilder auszuwerten. Es muss sichergestellt werden, dass die Proben für das Produkt repräsentativ sind (d. h. die Entnahme von stark verformtem Material, z. B. von den äußersten Enden bestimmter Produkte oder an Stellen, an denen die Probe abgeschert wurde usw., ist zu vermeiden.). Die Proben müssen nach den üblichen Verfahren poliert werden.
Wenn in der Produktnorm nichts anderes festgelegt ist oder mit dem Kunden vereinbart wurde, muss die Schlifffläche in Längsrichtung der Probe liegen, d. h. parallel zur Hauptverformungsachse bearbeiteter Produkte. Durch eine Bestimmung der Korngröße in einer Querebene wird bei nicht gleichachsigen Körnern ein systematischer Messfehler eingebracht.

Sichtbarmachen der Ferritkorngrenzen

Ferritkörner müssen durch Ätzen mit Nital (ethanolische 2%ige bis 3%ige Salpetersäurelösung) oder einem anderen geeigneten Ätzmittel sichtbar gemacht werden.

Sichtbarmachen der Austenit- und ehemaliger Austenitkorngrenzen

Allgemeines

Bei Stählen, die bei Umgebungstemperatur ein einphasiges oder zweiphasiges Austenitgefüge (DeltaFerritkörner in austenitischer Matrix) haben, müssen die Körner durch ein Ätzmittel sichtbar gemacht werden. Für einphasige austenitische nichtrostende Stähle sind die am häufigsten verwendeten Ätzmittel „glyceregia“, Kallings Reagenz (Nr. 2) und Marbles Reagenz. Das beste elektrolytische Ätzen für ein- oder zweiphasige nichtrostende Stähle erfolgt mit wässriger 60%iger Salpetersäure bei 1,4 V Gleichstrom innerhalb von 60 s bis 120 s, da sich damit die Korngrößen, aber nicht die von Zwillingskörnern, auffinden lassen. Wässrige 10 %ige Oxalsäure, 6 V Gleichstrom, bis zu 60 s, wird häufig verwendet, ist aber weniger effektiv als 60 % HNO3.

Für andere Stähle muss in Abhängigkeit vom Untersuchungsziel eines der nachfolgend aufgeführten Verfahren angewendet werden:

  • Verfahren nach „Bechet-Beaujard“ durch Ätzen mit wässriger gesättigter Pikrinsäurelösung

(siehe 6.3.2);

  • Verfahren nach „Kohn“ durch kontrollierte Oxidation (siehe 6.3.3);
  • Verfahren nach „McQuaid-Ehn“ durch Aufkohlung (siehe 6.3.4);
  • Verfahren zur Sensibilisierung der Korngrenzen (siehe 6.3.7);
  • andere Verfahren, die bei Bestellung vereinbart werden.

ANMERKUNG Die ersten drei Verfahren sind für ehemalige Austenitkorngrenzen geeignet, während die anderen für austenitische Mangan- oder austenitische nichtrostende Stähle geeignet sind, siehe Anhang A.

Bei Vergleichsprüfungen zwischen den verschiedenen Verfahren ist es notwendig, die gleichen Wärmebehandlungsbedingungen anzuwenden. Die nach verschiedenen Verfahren ermittelten Ergebnisse können beträchtlich voneinander abweichen.

Verfahren nach „Bechet-Beaujard“ durch Ätzen mit wässriger gesättigter Pikrinsäurelösung

Anwendungsbereich

Dieses Verfahren macht Austenitkörner sichtbar, die bei der Wärmebehandlung einer Probe gebildet werden. Es ist auf Proben mit martensitischem oder bainitischem Gefüge anwendbar. Um eine effektive Ätzung zu erzielen, muss ein Mindestgehalt von 0,005 % P vorliegen.

Vorbereitung

Das Bechet-Beaujard-Ätzmittel wird üblicherweise auf einer wärmebehandelten Stahlprobe angewendet. Im Allgemeinen ist keine weitere Wärmebehandlung notwendig, wenn die Probe ein martensitisches oder bainitisches Gefüge hat. Ist dies nicht der Fall, ist eine weitere Wärmebehandlung erforderlich.
Falls die Bedingungen zur Behandlung der Probe in der Internationalen Produktnorm nicht angegeben werden und keine gegenteiligen Festlegungen getroffen wurden, müssen für wärmebehandelte unlegierte Baustähle und niedrig legierte Stähle folgende Bedingungen angewendet werden:

  • 1,5 h bei (850 ± 10) °C für Stähle mit einem Kohlenstoffgehalt größer als 0,35 %;
  • 1,5 h bei (880 ± 10) °C für Stähle mit einem Kohlenstoffgehalt kleiner als oder gleich 0,35 %.

Nach dieser Behandlung muss die Probe in Wasser oder Öl abgeschreckt werden.

Polieren und Ätzen

Eine ebene Schnittfläche der Probe muss für die mikroskopische Untersuchung poliert sein. Sie muss über eine geeignete Dauer mit gesättigter wässriger Pikrinsäurelösung geätzt werden, die mindestens 0,5 % Natriumalkylsulfonat oder ein anderes geeignetes Netzmittel enthält.
ANMERKUNG Die Ätzdauer kann wenige Minuten bis mehr als eine Stunde betragen. Eine Erwärmung der Lösung auf 60 °C kann eventuell die Ätzwirkung verbessern und die Ätzdauer abkürzen.
Zur Verstärkung des Kontrastes zwischen den Korngrenzen und der Grundmasse der Probe ist es mitunternotwendig, das Ätzen und Polieren mehrmals zu wiederholen. Proben aus durchgehärtetem Stahl dürfen vor der Auswahl angelassen werden.

WARNUNG — Beim Erwärmen von Lösungen, die Pikrinsäure enthalten, muss das Verkochen der Lösung vermieden werden, da Pikrinsäure explosiv werden kann.

Ergebnis

Die Grenzen ehemaliger Austenitkörner müssen bei der mikroskopischen Untersuchung sofort erkennbar werden.

Verfahren nach „Kohn“ durch kontrollierte Oxidation

6.3.3.1 Anwendungsbereich Bei diesem Verfahren wird das austenitische Korngefüge erkennbar, das durch selektive Oxidation der Korngrenzen während der Austenitisierung bei der Temperatur einer entsprechenden Wärmebehandlung gebildet wird. 6.3.3.2 Vorbereitung Eine Fläche der Probe muss poliert sein. Die übrigen Probenflächen dürfen keine Oxidspuren aufweisen. Die Probe ist in einen Laboratoriumswärmeschrank zu bringen, in dem entweder ein Vakuum von 1 Pa vorhanden ist oder ein inertes Gas umläuft (z. B. gereinigtes Argon). Die Probe wird nach dem vom Käufer oder in der Internationalen Produktnorm festgelegten Austenitisierungsverfahren wärmebehandelt. Nach Abschluss der festgelegten Erwärmungsdauer muss über eine Dauer von 10 s bis 15 s Luft in den Wärmeschrank eingeleitet werden. Danach ist die Probe in Wasser abzuschrecken. Die Probe kann im Allgemeinen direkt unter einem Mikroskop untersucht werden. ANMERKUNG Das Oxidationsverfahren kann ohne inerte Atmosphäre durchgeführt werden. Das an der zuvor polierten Oberfläche anhaftende Oxid sollte durch leichtes Polieren mit einem feinen Schmirgelmittel entfernt werden, wobei darauf zu achten ist, dass das Oxidnetz, das sich auf den Korngrenzen gebildet hat, erhalten bleibt; im Anschluss daran sollte das Polieren nach den üblichen Verfahren fortgesetzt werden. Dann sollte die Probe mit Vilellas Ätzmittel geätzt werden: — Pikrinsäure 1 g; — Salzsäure 5 ml; — Ethanol 100 ml.

6.3.3.3 Ergebnis Die selektive Oxidation der Korngrenzen macht das Gefüge der Austenitkörner erkennbar. Wenn die Vorbereitung vorschriftsmäßig erfolgt, sollten an den Korngrenzen keine Oxidkügelchen auftreten. In einigen Fällen kann es notwendig sein, eine Schrägbeleuchtung oder DIC-Verfahren (en: Differential Interference Contrast) anzuwenden, um die Grenzen durch Kontrast besser erkennbar zu machen.

Verfahren nach „McQuaid-Ehn“ durch Aufkohlung bei 925 °C

6.3.4.1 Anwendungsbereich Dieses Verfahren ist speziell für Einsatzstähle bestimmt und macht Austenitkorngrenzen erkennbar, die beim Aufkohlen dieser Stähle gebildet werden. Dieses Verfahren ist im Allgemeinen nicht geeignet, Korngrenzen erkennbar zu machen, die bei anderen Wärmebehandlungen entstanden sind. ANMERKUNG Es kann auch eine „Scheinaufkohlung“ angewendet werden. Die Probe wird der gleichen thermischen Behandlung, aber ohne kohlenstoffreiche Atmosphäre unterzogen. Die weitere Wärmebehandlung erfolgt nach den Festlegungen für das jeweilige Produkt. Die Korngrenzen werden durch das Bechet-Beaujard-Ätzmittel sichtbar gemacht, siehe 6.3.2. 6.3.4.2Vorbereitung Die Proben dürfen keine Spuren einer Entkohlung oder Oberflächenoxidation zeigen. Alle vorangegangenen Kalt- und Warmverformungen, mechanische Bearbeitungen usw. können die Form der gebildeten Körner beeinflussen; in der Produktspezifikation müssen die Behandlungen angegeben werden, die in diesen Fällen vor einer Korngrößenbestimmung durchzuführen sind. Nach dem Aufkohlen muss die Probe so langsam abgekühlt werden, dass sich an den Korngrenzen der aufgekohlten Probe im übereutektischen Bereich gelöster Kohlenstoff als Zementit ausscheidet. Die Aufkohlung muss erreicht werden, indem die Probe über eine Dauer von 6 h bei (925 ± 10) °C behandelt wird. Zu diesem Zweck wird der Einsatzkasten im Allgemeinen 8 h, einschließlich der Aufheizzeit, bei (925 ± 10) °C, gehalten. In den meisten Fällen wird eine etwa 1 mm dicke Aufkohlungszone erzeugt. Nach der Aufkohlung wird die Probe so langsam abgekühlt, um die Ausscheidung des Zementits an den Korngrenzen des übereutektischen Bereichs der Aufkohlungszone sicherzustellen. Für jede Durchführung muss ungebrauchtes Aufkohlungspulver verwendet werden. 6.3.4.3 Probenvorbereitung Die aufgekohlte Probe muss senkrecht zu ihrer Oberfläche zerschnitten werden. Einer der Querschnitte muss für die mikroskopische Untersuchung vorbereitet werden und nach a) oder b) geätzt werden. a) „Le Chatelier und Igewski“-Reagenz (alkalisches Natriumpikrat): — Pikrinsäure 2 g; — Natriumhydroxid 25 g; — Wasser 100 ml. Dieses Ätzmittel wird durch Eintauchen für mindestens 1 min bei 100 °C oder durch elektrolytisches Ätzen bei Raumtemperatur für 60 s bei einem Gleichstrom von 6 V benutzt. b) Nital: — Salpetersäure 2 ml bis 5 ml; — Ethanol Restmenge zum Auffüllen auf 100 ml. Andere Ätzmittel dürfen angewendet werden, sofern sie dieselben Ergebnisse ermöglichen. 6.3.4.4 Ergebnis Die Grenzen der ehemaligen Austenitkörner in der übereutektischen aufgekohlten Oberflächenzone werden durch Ausscheidung von voreutektoidem Zementit nachgezeichnet.